Recently measured properties of water vapor (H(2)O) absorption lines have been used in calculations to evaluate the temperature sensitivity of differential absorption lidar (DIAL) H(2)O measurements. This paper estimates the temperature sensitivity of H(2)O lines in the 717-733-nm region for both H(2)O mixing ratio and number density measurements, and discusses the influence of the H(2)O line ground state energies E'', the H(2)O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for sixty-seven H(2)O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E'' values in the 100-300-cm(-1) range were found to be optimum for DIAL measurements of H(2)O number densities, while E'' values in the 250-500-cm(-1) range were found to be optimum for H(2)O mixing ratio measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.