Human serum albumin (HSA) is associated with several physiological functions, such as maintaining oncotic pressure and microvascular integrity, among others. It also represents the major and predominant antioxidant in plasma due to the presence of the Cys34 sulfhydryl group.In this study, we assessed qualitative and quantitative changes in HSA in patients with heart failure (HF) and their relationship with the severity of the disease. We detected by means of mass spectrometry a global decrease of the HSA content in the plasma of HF patients in respect to control subjects, a significant increase of thio-HSA with a concomitant decrease in the reduced form of albumin. Cysteine and, at a lesser extent, homocysteine represent the most abundant thiol bound to HSA. A strong inverse correlation was also observed between cysteine-HSA and peak VO2/kg, an index of oxygen consumption associated with HF severity. Moreover, in HL-1 cardiomyocytes incubated with H2O2, we showed a significant decrease of cell viability in cells treated with thio-HSA in respect to restored native-HSA. In conclusion, we found for the first time that S-thiolation of albumin is increased in the plasma of HF patients and induced changes in the structure and antioxidant function of HSA, likely contributing to HF progression.
Extracellular vesicles (EVs) are lipid-bound vesicles released from cells under physiological and pathological conditions. Basing on biogenesis, dimension, content and route of secretion, they can be classified into exosomes, microvesicles (MVs) and apoptotic bodies. EVs have a key role as bioactive mediators in intercellular communication, but they are also involved in other physiological processes like immune response, blood coagulation, and tissue repair. The interest in studying EVs has increased over the years due to their involvement in several diseases, such as cardiovascular diseases (CVDs), and their potential role as biomarkers in diagnosis, therapy, and in drug delivery system development. Nowadays, the improvement of mass spectrometry (MS)-based techniques allows the characterization of the EV protein composition to deeply understand their role in several diseases. In this review, a critical overview is provided on the EV’s origin and physical properties, as well as their emerging functional role in both physiological and disease conditions, focusing attention on the role of exosomes in CVDs. The most important cardiac exosome proteomic studies will be discussed giving a qualitative and quantitative characterization of the exosomal proteins that could be used in future as new potential diagnostic markers or targets for specific therapies.
The Human Plasma Proteome has always been the most investigated compartment in proteomics-based biomarker discovery, and is considered the largest and deepest version of the human proteome, reflecting the state of the body in health and disease.Even if efforts have been always dedicated to the refinement of proteomic approaches to investigate more deeply the plasma proteome, it should not be forgotten that also highly abundant plasma proteins, like human serum albumin (HSA), often neglected in these studies, might provide fundamental physiological functions in plasma, and should be better considered. This review summarizes the important roles of HSA in the context of cardiovascular diseases (CVD), and in particular in heart failure. Notwithstanding much attention has been historically directed toward the association of HSA levels and CVD risk, the advances in the field of mass spectrometry research allow also a better characterization of the effects of oxidative modifications that could alter not only the structure but also the function of HSA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.