[1] A horseshoe-shaped structure already identified on the southwestern flank of Montagne Pelée (Martinique, Lesser Antilles arc) was previously interpreted as resulting of a flank collapse event, but no debris avalanche deposits were observed at the time. New offshore high-resolution bathymetry and geophysical data (Aguadomar cruise; December 1998 to January 1999; R/V L'Atalante) lead us to identify three debris avalanche deposits on the submarine western flank of Montagne Pelée extending down to the Grenada Basin. They display morphological fronts and hummocky morphology on bathymetric data, speckled pattern on backscatter data and hyperbolic facies on 3.5 kHz and seismic profiles. New on-land geological studies lead us to identify two other horseshoe-shaped structures on the same flank of the volcano. The three submarine deposits have been traced back to the structures identified on land, which confirms the occurrence of repeated flank collapse events during the evolution of Montagne Pelée. The ages of the last two events are estimated at $9 ka and $25 ka on the basis of 14 C and 238 U/ 230Th dates. Every flank collapse produced debris avalanches which flowed down to the Caribbean Sea. We propose that the repeated instabilities are due to the large asymmetry of the island with western aerial and submarine slopes steeper than the eastern slopes. The asymmetry results from progressive loading by accumulation of volcanic products on the western slopes of the volcano and development of long-term gravitational instabilities. Meteoric and hydrothermal fluid circulation on the floor of the second flank collapse structure also creates a weakened hydrothermalized area, which favors the recurrence of flank collapses.INDEX TERMS: 3045 Marine Geology and Geophysics: Seafloor morphology and bottom photography; 8414 Volcanology: Eruption mechanisms; 8499 Volcanology: General or miscellaneous;
[1] Episodic magmatic degassing has been observed at numerous volcanoes, especially those of intermediate composition. It can span timescales from years to decades. Here we propose a physical model for the degassing of a shallow magma intrusion to explain this phenomenon. The magma cools by convection, which leads to melt crystallization, volatile exsolution, and magma overpressure. When the pressure reaches a critical value, wall rocks fracture and the exsolved gas escapes. The intrusion then returns to the initial lithostatic pressure and a new cooling-crystallization-degassing cycle occurs. A series of such cycles leads to episodic degassing. The trend and timescale of the degassing process are mainly governed by magma cooling. Two degassing regimes are exhibited: an early phase with a high frequency of gas pulses and a later phase with a lower gas pulse frequency. The transition between these two regimes is caused by the viscosity increase when the magma crystallinity exceeds the crystal percolation threshold. We find that the time to this transition is dependent on magma volume, to a first approximation. Where observations are available from sustained geochemical surveillance, the model provides constraints on key aspects of the subsurface magmatic system, with estimation of the volume of an intrusion and tensile strength of the surrounding rocks. It therefore represents a relevant tool for volcanic surveillance and hazard assessment.
Study of samples of the main volcanic units of the Afar rift, from margins to late axial series, have yielded the following conclusions: 1) the magmatic liquids are strongly differentiated by a fractional crystallization process in shallow chambers, the evolution of which is limited by injection of new primary liquids as shown in the latest axial series; 2) primary liquids are generated by melting of a homogeneous mantle source, a process whereby successive partial melting in a closed system is stopped by percolation of the generated liquid. The degrees of partial melting are closely related to spreading rates; 3) the magmatic processes involve a discontinuous dynamic evolution of spreading displayed by a pulsatory magmato-tectonic activity which is controlled by the speed of decompression of mantle material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.