Magnetoencephalographic (MEG) recordings are a rich source of information about the neural dynamics underlying cognitive processes in the brain, with excellent temporal and good spatial resolution. In recent years there have been considerable advances in MEG hardware developments and methods. Sophisticated analysis techniques are now routinely applied and continuously improved, leading to fascinating insights into the intricate dynamics of neural processes. However, the rapidly increasing level of complexity of the different steps in a MEG study make it difficult for novices, and sometimes even for experts, to stay aware of possible limitations and caveats. Furthermore, the complexity of MEG data acquisition and data analysis requires special attention when describing MEG studies in publications, in order to facilitate interpretation and reproduction of the results. This manuscript aims at making recommendations for a number of important data acquisition and data analysis steps and suggests details that should be specified in manuscripts reporting MEG studies. These recommendations will hopefully serve as guidelines that help to strengthen the position of the MEG research community within the field of neuroscience, and may foster discussion in order to further enhance the quality and impact of MEG research.
The brain consists of functional units with more-or-less specific information processing capabilities, yet cognitive functions require the co-ordinated activity of these spatially separated units. Magnetoencephalography (MEG) has the temporal resolution to capture these frequency-dependent interactions, although, due to volume conduction and field spread, spurious estimates may be obtained when functional connectivity is estimated on the basis of the extra-cranial recordings directly. Connectivity estimates on the basis of reconstructed sources may similarly be affected by biases introduced by the source reconstruction approach.Here we propose an analysis framework to reliably determine functional connectivity that is based around two main ideas: (i) functional connectivity is computed for a set of atlas-based ROIs in anatomical space that covers almost the entire brain, aiding the interpretation of MEG functional connectivity/network studies, as well as the comparison with other modalities; (ii) volume conduction and similar bias effects are removed by using a functional connectivity estimator that is insensitive to these effects, namely the Phase Lag Index (PLI).Our analysis approach was applied to eyes-closed resting-state MEG data for thirteen healthy participants. We first demonstrate that functional connectivity estimates based on phase coherence, even at the source-level, are biased due to the effects of volume conduction and field spread. In contrast, functional connectivity estimates based on PLI are not affected by these biases. We then looked at mean PLI, or weighted degree, over areas and subjects and found significant mean connectivity in three (alpha, beta, gamma) of the five (including theta and delta) classical frequency bands tested. These frequency-band dependent patterns of resting-state functional connectivity were distinctive; with the alpha and beta band connectivity confined to posterior and sensorimotor areas respectively, and with a generally more dispersed pattern for the gamma band. Generally, these patterns corresponded closely to patterns of relative source power, suggesting that the most active brain regions are also the ones that are most-densely connected.Our results reveal for the first time, using an analysis framework that enables the reliable characterisation of resting-state dynamics in the human brain, how resting-state networks of functionally connected regions vary in a frequency-dependent manner across the cortex.
In recent years there has been a shift in focus from the study of local, mostly task-related activation to the exploration of the organization and functioning of large-scale structural and functional complex brain networks. Progress in the interdisciplinary field of modern network science has introduced many new concepts, analytical tools and models which allow a systematic interpretation of multivariate data obtained from structural and functional MRI, EEG and MEG. However, progress in this field has been hampered by the absence of a simple, unbiased method to represent the essential features of brain networks, and to compare these across different conditions, behavioural states and neuropsychiatric/neurological diseases. One promising solution to this problem is to represent brain networks by a minimum spanning tree (MST), a unique acyclic subgraph that connects all nodes and maximizes a property of interest such as synchronization between brain areas. We explain how the global and local properties of an MST can be characterized. We then review early and more recent applications of the MST to EEG and MEG in epilepsy, development, schizophrenia, brain tumours, multiple sclerosis and Parkinson's disease, and show how MST characterization performs compared to more conventional graph analysis. Finally, we illustrate how MST characterization allows representation of observed brain networks in a space of all possible tree configurations and discuss how this may simplify the construction of simple generative models of normal and abnormal brain network organization.
Normal brain function requires interactions between spatially separated, and functionally specialized, macroscopic regions, yet the directionality of these interactions in large-scale functional networks is unknown. Magnetoencephalography was used to determine the directionality of these interactions, where directionality was inferred from time series of beamformer-reconstructed estimates of neuronal activation, using a recently proposed measure of phase transfer entropy. We observed well-organized posterior-to-anterior patterns of information flow in the higher-frequency bands (alpha1, alpha2, and beta band), dominated by regions in the visual cortex and posterior default mode network. Opposite patterns of anterior-toposterior flow were found in the theta band, involving mainly regions in the frontal lobe that were sending information to a more distributed network. Many strong information senders in the theta band were also frequent receivers in the alpha2 band, and vice versa. Our results provide evidence that large-scale resting-state patterns of information flow in the human brain form frequencydependent reentry loops that are dominated by flow from parietooccipital cortex to integrative frontal areas in the higher-frequency bands, which is mirrored by a theta band anterior-to-posterior flow.information flow | phase transfer entropy | resting-state networks | magnetoencephalography | atlas-based beamforming T he brain is an extremely complex system (1-3) containing, at the macroscopic scale, interconnected functional units (4) with more-or-less specific information processing capabilities (5). However, cognitive functions require the coordinated activity of these spatially separated units, where the oscillatory nature of neuronal activity may provide a possible mechanism (6-9). A complete description of these interactions, in terms of both strength and directionality, is therefore necessary for the understanding of both normal and abnormal brain functioning.Functional interactions may be inferred from statistical dependencies between the time series of neuronal activity at different sites, so-called functional connectivity (10). Indeed, interactions in large-scale functional networks have been observed using Electroencephalography, Magnetoencephalography (EEG/MEG) and functional Magnetic Resonance Imaging (fMRI) (e.g., refs. 11-14). However, as yet, little is known about the directionality of these interactions in large-scale functional networks during the resting state. Estimating directionality from fMRI is challenging due to its limited temporal resolution and indirect relation to neuronal activity (15, 16). In contrast, EEG studies in healthy controls have revealed a front-to-back pattern of directed connectivity, particularly in the alpha band (17-22), consistent with modeling studies that have shown that such patterns may arise due to differences in the number of anatomical connections (the degree) of anterior and posterior regions (22, 23). However, modeled patterns of information flow depend on the a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.