The human brain is capable of generating new functional neurons throughout life, a phenomenon known as adult neurogenesis. The generation of new neurons is sustained throughout adulthood due to the proliferation and differentiation of adult neural stem cells. This process in humans is uniquely located in the subgranular zone of the dentate gyrus in the hippocampus. Adult hippocampal neurogenesis (AHN) is thought to play a major role in hippocampus-dependent functions, such as spatial awareness, long-term memory, emotionality, and mood. The overall aim of current treatments for cancer (such as radiotherapy and chemotherapy) is to prevent aberrant cell division of cell populations associated with malignancy. However, the treatments in question are absolutist in nature and hence inhibit all cell division. An unintended consequence of this cessation of cell division is the impairment of adult neural stem cell proliferation and AHN. Patients undergoing treatment for cancerous malignancies often display specific forms of memory deficits, as well as depressive symptoms. This review aims to discuss the effects of cancer treatments on AHN and propose a link between the inhibition of the neurogenetic process in the hippocampus and the advent of the cognitive and mood-based deficits observed in patients and animal models undergoing cancer therapies. Possible evidence for coadjuvant interventions aiming to protect neural cells, and subsequently the mood and cognitive functions they regulate, from the ablative effects of cancer treatment are discussed as potential clinical tools to improve mental health among cancer patients.
Background/Aims: Anxious responses are evolutionarily adaptive, but excessive fear can become disabling and lead to anxiety disorders. Translational models of anxiety might be useful sources for understanding the neurobiology of fear and anxiety and can contribute to future proposals of therapeutic intervention for the disorders studied. Brain-derived neurotrophic factor (BDNF), which is known for its importance on neuroplasticity and contextual memory, has emerged as a relevant element for emotional memory. Recent studies show that the Val66Met BDNF polymorphism correlates with various psychiatric disorders, including anxiety, but there are several differences between experimental and clinical studies. Methods: In this work, we review the literature focused on the BDNF Val66Met polymorphism and anxiety, and discuss biological findings from animal models to clinical studies. Results: As occurs with other psychiatric disorders, anxiety correlates with anatomical, behavioral and physiological changes related to the BDNF polymorphism. In animal studies, it has been shown that a significant decrease in regulated secretion from both BDNFVal/Met and BDNFMet/Met neurons represented a significant decrease in available BDNF. Conclusion: These studies suggest that developing pharmacological strategies facilitating the release of BDNF from synapses or prolongation of the half-life of secreted BDNF may improve the therapeutic responses of humans expressing the BDNF polymorphism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.