The generation of high quality plasma from whole blood is of major interest for many biomedical analyses and clinical diagnostic methods. However, it has proven to be a major challenge to make use of microfluidic separation devices to process fluids with high cell content, such as whole blood. Here, we report on an acoustophoresis based separation chip that prepares diagnostic plasma from whole blood linked to a clinical application. This acoustic separator has the capacity to sequentially remove enriched blood cells in multiple steps to yield high quality plasma of low cellular content. The generated plasma fulfills the standard requirements (<6.0 x 10(9) erythrocytes/L) recommended by the Council of Europe. Further, we successfully linked the plasmapheresis microchip to our previously developed porous silicon sandwich antibody microarray chip for prostate specific antigen (PSA) detection. PSA was detected by good linearity (R(2) > 0.99) in the generated plasma via fluorescence readout without any signal amplification at clinically relevant levels (0.19-21.8 ng/mL).
This work presents the development of a miniaturized system for removing plasma proteins and other low-molecular-weight compounds from red blood cell (RBC) concentrate in a simple one-step-process using integrated ultrasound. The technology utilizes the principles of acoustophoresis to transfer the RBCs from the original plasma-containing solution into a protein-free SAG-M additive solution in a continuous flow process. The preparation of protein free RBC concentrate is important for blood transfusion to patients suffering from immunoglobulin A (IgA)-deficiency and developing antibodies against IgA. We show a nearly complete removal of both albumin and IgA from concentrated RBCs via this one-step-processes in samples obtained from RBC concentrate. The cell recovery of our technology is close to 97%, compared to just above 90% of the current procedure of repeated dilution and centrifugation steps. This work clearly shows the potential of integrated acoustophoresis in a miniaturized system for clinical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.