Vertebrate growth can be phenotypically plastic in response to predator–prey and competitive interactions. It is unknown however, if it can be plastic in response to mutualistic interactions. Here we investigate plasticity of vertebrate growth in response to variation in mutualistic interactions, using clown anemonefish and their anemone hosts. In the wild, there is a positive correlation between the size of the fish and the size of the anemone, but the cause of this correlation is unknown. Plausible hypotheses are that fish exhibit growth plasticity in response to variation in food or space provided by the host. In the lab, we pair individuals with real anemones of various sizes and show that fish on larger anemones grow faster than fish on smaller anemones. By feeding the fish a constant food ration, we exclude variation in food availability as a cause. By pairing juveniles with artificial anemones of various sizes, we exclude variation in space availability as a single cause. We argue that variation in space availability in conjunction with host cues cause the variability in fish growth. By adjusting their growth, anemonefish likely maximize their reproductive value given their anemone context. More generally, we demonstrate vertebrate growth plasticity in response to variation in mutualistic interactions.
Coral reefs are increasingly ecologically destabilized across the globe due to climate change. Behavioural plasticity in corallivore behaviour and short-term trophic ecology in response to bleaching events may influence the extent and severity of coral bleaching and subsequent recovery potential, yet our understanding of these interactions in situ remains unclear. Here, we investigated interactions between corallivory and coral bleaching during a severe high thermal event (10.3-degree heating weeks) in Belize. We found that parrotfish changed their grazing behaviour in response to bleaching by selectively avoiding bleached Orbicella spp. colonies regardless of bleaching severity or coral size. For bleached corals, we hypothesize that this short-term respite from corallivory may temporarily buffer coral energy budgets by not redirecting energetic resources to wound healing, and may therefore enable compensatory nutrient acquisition. However, colonies that had previously been heavily grazed were also more susceptible to bleaching, which is likely to increase mortality risk. Thus, short-term respite from corallivory during bleaching may not be sufficient to functionally rescue corals during prolonged bleaching. Such pairwise interactions and behavioural shifts in response to disturbance may appear small scale and short term, but have the potential to fundamentally alter ecological outcomes, especially in already-degraded ecosystems that are vulnerable and sensitive to change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.