Clownfishes (Amphiprioninae) are a fascinating example of marine radiation. From a central Pacific ancestor, they quickly colonized the coral reefs of the Indo-Pacific and diversified independently on each side of the Indo-Australian Archipelago. Their association with venomous sea anemones is often thought to be the key innovation that enabled the clownfish radiation. However, this intuition has little empirical or theoretical support given our current knowledge of the clade. To date, no ecological variable has been identified that can explain clownfish niche partitioning, phenotypic evolution, species co-occurrence, and thus, the adaptive radiation of the group. Our synthetic work solves this long-standing mystery by testing the influence of sea anemone host use on phenotypic divergence. We provide the first major revision to the known clownfish-sea anemone host associations in over 30 years, accounting for host associations in a biologically relevant way. We gathered whole-genome data for all 28 clownfish species and reconstructed a fully supported species tree for the Amphiprioninae. Integrating this new data into comparative phylogenomic approaches, we demonstrate for the first time, that the host sea anemones are the drivers of convergent evolution in clownfish color pattern and morphology. During the adaptive radiation of this group, clownfishes in different regions that associate with the same hosts have evolved the same phenotypes. Comparative genomics also reveals several genes under convergent positive selection linked to host specialisation events. Our results identify the sea anemone host as the key ecological variable that disentangles the entire adaptive radiation. As one of the most recognizable animals on the planet and an emerging model organism in the biological sciences, our findings bear on the interpretation of dozens of prior studies on clownfishes and will radically reshape research agendas for these iconic organisms.