iron-sulfur cluster (ISC) ͉ ISC-assembly machinery ͉ mitochondria ͉ biogenesis
Biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is an essential process involving the mitochondrial iron-sulfur cluster (ISC) assembly and export machineries and the cytosolic iron/sulfur protein assembly (CIA) apparatus. To define the integration of Fe/S protein biogenesis into cellular homeostasis, we compared the global transcriptional responses to defects in the three biogenesis systems in Saccharomyces cerevisiae using DNA microarrays. Depletion of a member of the CIA machinery elicited only weak (up to 2-fold) alterations in gene expression with no clear preference for any specific cellular process. In contrast, depletion of components of the mitochondrial ISC assembly and export systems induced strong and largely overlapping transcriptional responses of more than 200 genes (2-100-fold changes). These alterations were strikingly similar, yet not identical, to the transcriptional profiles developed upon iron starvation. Hence, mitochondria and their ISC systems serve as primary physiological regulators exerting a global control of numerous iron-dependent processes. First, ISC depletion activates the iron-responsive transcription factors Aft1/2p leading to increased cellular iron acquisition. Second, respiration and heme metabolism are repressed ensuring the balanced utilization of iron by the two major iron-consuming processes, ironsulfur protein and heme biosynthesis. Third, the decreased respiratory activity is compensated by induction of genes involved in glucose acquisition. Finally, transcriptional remodeling of the citric acid cycle and the biosyntheses of ergosterol and biotin reflect the iron dependence of these pathways. Together, our data suggest a model in which mitochondria perform a global regulatory role in numerous cellular processes linked to iron homeostasis.
Iron-sulfur (Fe/S) clusters are important cofactors of numerous proteins involved in electron transfer, metabolic and regulatory processes. In eukaryotic cells, known Fe/S proteins are located within mitochondria, the nucleus and the cytosol. Over the past years the molecular basis of Fe/S cluster synthesis and incorporation into apoproteins in a living cell has started to become elucidated. Biogenesis of these simple inorganic cofactors is surprisingly complex and, in eukaryotes such as Saccharomyces cerevisiae, is accomplished by three distinct proteinaceous machineries. The "iron-sulfur cluster (ISC) assembly machinery" of mitochondria was inherited from the bacterial ancestor of mitochondria. ISC components are conserved in eukaryotes from yeast to man. The key principle of biosynthesis is the assembly of the Fe/S cluster on a scaffold protein before it is transferred to target apoproteins. Cytosolic and nuclear Fe/S protein maturation also requires the function of the mitochondrial ISC assembly system. It is believed that mitochondria contribute a still unknown compound to biogenesis outside the organelle. This compound is exported by the mitochondrial "ISC export machinery" and utilised by the "cytosolic iron-sulfur protein assembly (CIA) machinery". Components of these two latter systems are also highly conserved in eukaryotes. Defects in the mitochondrial ISC assembly and export systems, but not in the CIA machinery have a strong impact on cellular iron uptake and intracellular iron distribution showing that mitochondria are crucial for both cellular Fe/S protein assembly and iron homeostasis.
Budding yeast (Saccharomyces cerevisiae) responds to iron deprivation both by Aft1-Aft2-dependent transcriptional activation of genes involved in cellular iron uptake and by Cth1-Cth2-specific degradation of certain mRNAs coding for iron-dependent biosynthetic components. Here, we provide evidence for a novel principle of iron-responsive gene expression. This regulatory mechanism is based on the modulation of transcription through the iron-dependent variation of levels of regulatory metabolites. As an example, the LEU1 gene of branched-chain amino acid biosynthesis is downregulated under iron-limiting conditions through depletion of the metabolic intermediate ␣-isopropylmalate, which functions as a key transcriptional coactivator of the Leu3 transcription factor. Synthesis of ␣-isopropylmalate involves the iron-sulfur protein Ilv3, which is inactivated under iron deficiency. As another example, decreased mRNA levels of the cytochrome c-encoding CYC1 gene under iron-limiting conditions involve heme-dependent transcriptional regulation via the Hap1 transcription factor. Synthesis of the iron-containing heme is directly correlated with iron availability. Thus, the ironresponsive expression of genes that are downregulated under iron-limiting conditions is conferred by two independent regulatory mechanisms: transcriptional regulation through iron-responsive metabolites and posttranscriptional mRNA degradation. Only the combination of the two processes provides a quantitative description of the response to iron deprivation in yeast.
Edited by Stuart Ferguson Keywords:Iron metabolism Iron regulatory protein 2 Proteasome Oxidative stress Hypoxia a b s t r a c t Iron regulatory protein 2 (IRP2) is a critical switch for cellular and systemic iron homeostasis. In iron-deficient or hypoxic cells, IRP2 binds to mRNAs containing iron responsive elements (IREs) and regulates their expression. Iron promotes proteasomal degradation of IRP2 via the F-box protein FBXL5. Here, we explored the effects of oxygen and cellular redox status on IRP2 stability. We show that iron-dependent decay of tetracycline-inducible IRP2 proceeds efficiently under mild hypoxic conditions (3% oxygen) but is compromised in severe hypoxia (0.1% oxygen). A treatment of cells with exogenous H 2 O 2 protects IRP2 against iron and increases its IRE-binding activity. IRP2 is also stabilized during menadione-induced oxidative stress. These data demonstrate that the degradation of IRP2 in iron-replete cells is not only oxygen-dependent but also sensitive to redox perturbations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.