Contemporary researchers have specified that natural flax fiber is comparable with synthetic fibers due to its unique physical and mechanical characteristics which have been recognized for decades. Flax fiber reinforced composites have the potential for wide usage in sport and maritime industries, and as automotive accessories. In addition, this composite is in the development stages for future applications in the aeronautical industry. However, designing the flax composite parts is a challenging task due to the great variability in fiber properties. This is caused by many factors, including the plant origin and growth conditions, plant age, location in the stem, fibers extraction method, and the fact that there is often a non-uniform cross-section of the fibers. Furthermore, the water and moisture absorption tendency of the flax fibers and their composites and the consequent detrimental effects on their mechanical performance are also major drawbacks. Fibers may soften and swell with absorbed water molecules, which could affect the performance of this bio-composite. Flax fibers' moisture absorption propensity may lead to a deterioration of the fiber-matrix interface, weakening the interfacial strength and ultimately degrading the quality of the composite. This review represents a brief summary of the main findings of research into flax fiber reinforced composites, focusing on the challenges of its water and moisture absorption behavior on their performance.
Seed quality is of great importance in optimizing the cost of crop establishment. Rapid and non-destructive seed quality detection methods must therefore be developed for agriculture and the seed production industry. This review focuses primarily on non-destructive techniques, namely machine vision, spectroscopy, hyperspectral imaging, soft X-ray imaging, thermal imaging and electronic nose techniques, for assessing the quality of agricultural seeds. The fundamentals of these techniques are introduced. Seed quality, including chemical composition, variety identification and classification, insect damage and disease assessment as well as seed viability and germinability of various seeds are discussed. We conclude that non-destructive techniques are accurate detection methods with great potential for seed quality assessment.
The growing usage of bio-composite materials in different engineering applications demands a thorough understanding of their performance during their service. Extreme environmental conditions, such as warm, humid, and freezing environments, among others, can degrade the mechanical properties of the bio-composites when they are exposed to harsh environmental conditions. In addition, the use of these composites in underwater applications can also shorten their life cycle. In this work, the durability and mechanical performance (tensile and flexural behavior) of flax/bio-epoxy composites exposed to different environmental conditions were evaluated. These conditions were chosen to replicate those found outdoors that can affect the durability of these materials: water immersion, warm humid environment and freeze-thaw conditions. Moisture and water absorption behavior were evaluated and the water content (or exposure time) was related to the physical changes and mechanical properties. Results show that the mechanical properties of flax/bio-epoxy composites are clearly degraded by water ageing when they are compared to the "as manufactured" composites. The tensile strength and modulus is decreased approximately by 9% and 57%, respectively for water saturated (immersed in water until saturation) samples compared to as manufactured samples. On contrary, this reduction rate is only 0.8% and 3%,
Food-borne pathogens causing infections and intoxications can affect everyone. Escherichia (E) coli is one of the major food borne bacterial pathogens. This study was conducted to investigate the prevalence of E. coli in milk, chicken meat and beef and to determine the multi-drug resistance profile of E. coli in Mymensingh district, Bangladesh. A total of 169 samples including milk (n=108), chicken meat (n=51) and beef (n=10) were collected from Bangladesh Agricultural University (BAU) dairy farm, American dairy farm, Gazipur and retail markets of municipal area during July 2016 to June 2017. E. coli were isolated and identified by colony characteristics on selective agar like Eosine-methylene blue (EMB) agar, Salmonella-Shigella (SS) agar, Gram staining, biochemical test and Polymerase Chain Reaction (PCR). The overall prevalence of E. coli in all food samples was 37.86%. A total of 32 (29.63%) milk, 25 (49.02%) chicken meat and 07 (70%) beef samples were E. coli positive through conventional method. Among 64 samples only 23 samples (35.94%) were confirmed by PCR. Multi-drug resistant E. coli were detected by disc diffusion test using 10 commonly used antibiotics. Antibiogram study showed that E. coli isolated from chicken meat were resistant to oxytetracycline (92%), sulphonamide-trimethoprim (84%), amoxycillin (76%) and erythromycin (60%). E. coli isolated from beef sample were resistant to erythromycin (85.71%) and oxytetracycline (71.43%) and sensitive to ciprofloxacin (100%), gentamicin (100%) and neomycin (100%). However, all isolates of E. coli were found sensitive to amikacin (100%). E. coli isolated from milk sample were 100% sensitive to gentamicin followed by neomycin, ciprofloxacin, azithromycin, oxytetracycline and erythromycin. Overall 50% of E. coli isolates of food were found multi-drug resistant. About 28.13%, 57.14% and 76% of the E. coli isolates originated from milk, beef and chicken meat respectively were multi-drug resistant. The higher prevalence of E. coli in chicken meat, beef and milk indicates unhygienic production and processing of these foods. Presence of multi-drug resistant E. coli in these foods might pose serious public health threats. The antibiogram profile of the isolates will help therapeutic decision making in the treatment of colibacillosis in cattle and poultry in Bangladesh.
Moisture present in plant fibres is considered to be detrimental to the performance of composites. In general, a drying stage is performed on the plant fibre fabrics before manufacturing the composites since it is seemed to allow better output. This work provides an analysis about the effect of moisture in flax fibres on the overall quality of epoxy/flax biocomposites. Flax fibre fabrics were conditioned at different relative humidity (RH) environments and composites were manufactured by vacuum infusion technique. Composites were characterized by mechanical and microstructural analysis. Results showed that manufacturing composites with highly humid fabrics (95% RH) generates post processing deformation of finished parts and also leads to poor microstructural quality. The moisture in the fibres with different RH reduced the stiffness (from 23.74 to 17.67 GPa for Young's modulus and from 16.28 to 11.82 GPa for flexural modulus) but increased their fracture strain (from 1.87 to 2.64). Tensile strength displayed an optimum value (287.96 MPa) for fabrics conditioned at 50% RH, but flexural strength decreases continuously from 225.12 to 152.34 MPa as the moisture in the fabric increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.