High-harmonic spectroscopy provides a unique insight into the electronic structure of atoms and molecules 1-5. Although attosecond science holds the promise of accessing the timescale of electron-electron interactions, until now, their signature has not been seen in high-harmonic spectroscopy. We have recorded high-harmonic spectra of atoms to beyond 160 eV, using a new, almost ideal laser source with a wavelength of 1.8 µm and a pulse duration of less than two optical cycles. We show that we can relate these spectra to differential photoionization cross-sections measured with synchrotron sources. In addition, we show that the highharmonic spectra contain features due to collective multielectron effects involving inner-shell electrons, in particular the giant resonance in xenon. We develop a new theoretical model based on the strong-field approximation and show that it is in agreement with the experimental observations. Measuring and understanding the electronic structure and correlated dynamics of matter on its natural timescale represents the main thrust of ultrafast laser science. Electron correlations affect essential properties of complex systems ranging from configuration interactions in molecules to cooperative phenomena in solids, such as superconductivity. Our knowledge of the electronic structure of matter originates from several decades of research on photoionization and photoelectron spectroscopy 6-8 , mainly driven by the development of synchrotron-based sources. Recent advances in strong-field physics have opened an alternative approach to probing both the electronic structure 1,9 and the dynamics 10-12 of molecules using table-top laser sources. These new methods rely on the recollision of an electron, removed from the molecule by a strong laser field, with its parent ion 13 , as illustrated in Fig. 1a. The electronic structure of the molecule is encoded in the emitted high-harmonic spectrum through the amplitude and phase of the photorecombination matrix elements 4,11,14,15. We use high-harmonic spectroscopy to investigate a new class of collective electronic dynamics-induced and probed by the recombining electron. The kinetic energy of the returning electron is usually much larger than the difference between electronic energy levels of the parent ion. Consequently, inelastic scattering followed by recombination is energetically possible, as illustrated in Fig. 1b. Using the xenon atom as an example, we demonstrate that such processes indeed occur and that they can locally enhance the efficiency of high-harmonic generation (HHG) by more than one order of magnitude. We show that such a seemingly complex pathway contributes significantly to the phase-matched process. This observation uncovers a new
A Lower Tunnel Among the peculiarities inherent in quantum mechanics is the ability of particles to tunnel through barriers that they lack the energy to surmount classically, as happens during radioactive decay. Strong laser fields can liberate electrons in this way from atoms and molecules. Akagi et al. (p. 1364 ) elegantly confirm that tunneling is not limited to the highest-energy electrons in a system by mapping the energy and momentum of both the ejected electron and positive ion produced when an intense laser pulse impinges on hydrogen chloride. When the molecule adopts specific orientations relative to the laser field, tunneling occurs from lower-lying states, as well as the highest-energy occupied orbital. This raises the possibility of tunneling microscopy capable of imaging the electronic structure of single molecules.
Wavelength scaling of high harmonic generation efficiencyUsing longer wavelength laser drivers for high harmonic generation is desirable because the highest extreme ultraviolet frequency scales as the square of the wavelength. Recent numerical studies predict that high harmonic efficiency falls dramatically with increasing wavelength, with a very unfavorable Àð5À6Þ scaling. We performed an experimental study of the high harmonic yield over a wavelength range of 800-1850 nm. A thin gas jet was employed to minimize phase matching effects, and the laser intensity and focal spot size were kept constant as the wavelength was changed. Ion yield was simultaneously measured so that the total number of emitting atoms was known. We found that the scaling at constant laser intensity is À6:3AE1:1 in Xe and À6:5AE1:1 in Kr over the wavelength range of 800-1850 nm, somewhat worse than the theoretical predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.