Even though there are various types of cancer, this pathology as a whole is considered the principal cause of death worldwide. Lung cancer is known as a heterogeneous condition, and it is apparent that genome modification presents a significant role in the occurrence of this disorder. There are conventional procedures that can be utilized against diverse cancer types, such as chemotherapy or radiotherapy, but they are hampered by the numerous side effects. Owing to the many adverse events observed in these therapies, it is imperative to continuously develop new and improved strategies for managing individuals with cancer. Nanomedicine plays an important role in establishing new methods for detecting chromosomal rearrangements and mutations for targeted chemotherapeutics or the local delivery of drugs via different types of nano-particle carriers to the lungs or other organs or areas of interest. Because of the complex signaling pathways involved in developing different types of cancer, the need to discover new methods for prevention and detection is crucial in producing gene delivery materials that exhibit the desired roles. Scientists have confirmed that nanotechnology-based procedures are more effective than conventional chemotherapy or radiotherapy, with minor side effects. Several nanoparticles, nanomaterials, and nanosystems have been studied, including liposomes, dendrimers, polymers, micelles, inorganic nanoparticles, such as gold nanoparticles or carbon nanotubes, and even siRNA delivery systems. The cytotoxicity of such nanosystems is a debatable concern, and nanotechnology-based delivery systems must be improved to increase the bioavailability, biocompatibility, and safety profiles, since these nanosystems boast a remarkable potential in many biomedical applications, including anti-tumor activity or gene therapy. In this review, the nanosystems involved in treating lung cancer and its associated challenges are discussed.
Mounting evidence shows that supplementation with vitamin D and K or their analogs induces beneficial effects in various diseases, e.g., osteoarticular, cardiovascular, or carcinogenesis. The use of drugs delivery systems via organic and inorganic nanocarriers increases the bioavailability of vitamins and analogs, enhancing their cellular delivery and effects. The nanotechnology-based dietary supplements and drugs produced by the food and pharmaceutical industries overcome the issues associated with vitamin administration, such as stability, absorption or low bioavailability. Consequently, there is a continuous interest in optimizing the carriers’ systems in order to make them more efficient and specific for the targeted tissue. In this pioneer review, we try to circumscribe the most relevant aspects related to nanocarriers for drug delivery, compare different types of nanoparticles for vitamin D and K transportation, and critically address their benefits and disadvantages.
Cancer is a leading cause of death worldwide, and the main treatment methods for this condition are surgery, chemotherapy, and radiotherapy. These treatment methods are invasive and can cause severe adverse reactions among organisms, so nanomaterials are increasingly used as structures for anticancer therapies. Dendrimers are a type of nanomaterial with unique properties, and their production can be controlled to obtain compounds with the desired characteristics. These polymeric molecules are used in cancer diagnosis and treatment through the targeted distribution of some pharmacological substances. Dendrimers have the ability to fulfill several objectives in anticancer therapy simultaneously, such as targeting tumor cells so that healthy tissue is not affected, controlling the release of anticancer agents in the tumor microenvironment, and combining anticancer strategies based on the administration of anticancer molecules to potentiate their effect through photothermal therapy or photodynamic therapy. The purpose of this review is to summarize and highlight the possible uses of dendrimers regarding the diagnosis and treatment of oncological conditions.
The tumor microenvironment is a highly dynamic accumulation of resident and infiltrating tumor cells, responsible for growth and invasion. The authors focused on the leading-edge concepts regarding the glioblastoma microenvironment. Due to the fact that the modern trend in the research and treatment of glioblastoma is represented by multiple approaches that target not only the primary tumor but also the neighboring tissue, the study of the microenvironment in the peritumoral tissue is an appealing direction for current and future therapies.
Background: Vitamin K-dependent proteins (VKDPs) and the epidermal growth factor receptor (EGFR) are involved in lung cancer progression. Therefore, we aimed to study the serum concentration of Matrix Gla protein (MGP), Growth Arrest-specific 6 (Gas6), and EGFR before and after the first cycle of chemotherapy and to investigate how MGP, Gas6, and EGFR are modified after one cycle of chemotherapy. Methods: We performed an observational study on twenty patients diagnosed with lung cancer, by assessing the serum concentration of vitaminK1 (VitK1), MGP, Gas6, and EGFR using the ELISA technique before and after three weeks of the first cycle of chemotherapy. Patients were evaluated using RECIST 1.1 criteria. Results: Serum levels of MGP, Gas6, EGFR, and VK1 before and after treatment were not changed significantly. Regarding the pre-treatment correlation of the MGP values, we found a strong positive relationship between MGP and VK1 pre-treatment values (r = 0.821, 95%CI 0.523; 0.954, p < 0.001). Furthermore, there was a moderately negative correlation between VK1 and EGFR pre-treatment values, with the relationship between them being marginally significant (r = −0.430, 95%CI −0.772; 0.001, p = 0.058). Post-treatment, we found a strong positive relationship between MGP and VK1 post-treatment values (r = 0.758, 95%CI 0.436; 0.900, p < 0.001). We also found a moderate positive relationship between Gas6 and EGFR post-treatment values, but the correlation was only marginally significant (r = 0.442, p = 0.051).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.