BackgroundAmong the EF-Hand calcium-binding proteins the subgroup of S100 proteins constitute a large family with numerous and diverse functions in calcium-mediated signaling. The evolutionary origin of this family is still uncertain and most studies have examined mammalian family members.ResultsWe have performed an extensive search in several teleost genomes to establish the s100 gene family in fish. We report that the teleost S100 repertoire comprises fourteen different subfamilies which show remarkable similarity across six divergent teleost species. Individual species feature distinctive subsets of thirteen to fourteen genes that result from local gene duplications and gene losses. Eight of the fourteen S100 subfamilies are unique for teleosts, while six are shared with mammalian species and three of those even with cartilaginous fish. Several S100 family members are found in jawless fish already, but none of them are clear orthologs of cartilaginous or bony fish s100 genes. All teleost s100 genes show the expected structural features and are subject to strong negative selection. Many aspects of the genomic arrangement and location of mammalian s100 genes are retained in the teleost s100 gene family, including a completely conserved intron/exon border between the two EF hands. Zebrafish s100 genes exhibit highly specific and characteristic expression patterns, showing both redundancy and divergence in their cellular expression. In larval tissue expression is often restricted to specific cell types like keratinocytes, hair cells, ionocytes and olfactory receptor neurons as demonstrated by in situ hybridization.ConclusionThe origin of the S100 family predates at least the segregation of jawed from jawless fish and some extant family members predate the divergence of bony from cartilaginous fish. Despite a complex pattern of gene gains and losses the total repertoire size is remarkably constant between species. On the expression level the teleost S100 proteins can serve as precise markers for several different cell types. At least some of their functions may be related to those of their counterparts in mammals. Accordingly, our findings provide an excellent basis for future studies of the functions and interaction partners of s100 genes and finally their role in diseases, using the zebrafish as a model organism.
The protein cross‐linking enzyme transglutaminase from Streptomyces mobaraensis (MTG) is frequently used to modify therapeutic proteins. In order to reveal the binding mode of glutamine donor substrates, we have now crystallized MTG covalently linked to large inhibitory peptides. A series of peptide structures were examined but DIPIGSKMTG, which was chloroacetylated at serine, was the only inhibitory molecule that resulted in an interpretable density map. We found that, besides the warhead (modified Ser6), Ile4 and Gly5 of the inhibitory peptide occupy the tight but extended hydrophobic bottom of the MTG‐binding cleft. Both termini of the peptide protrude along the cleft walls almost perpendicular to the bottom of the extended cleft. This peptide model suggests a zipper‐like cross‐linking mechanism of self‐assembled substrate proteins by MTG.
Streptomyces mobaraensis produces the papain inhibitor SPI consisting of a 12 kDa protein and small active compounds (SPI ac ). Purification of the papain inhibitory compounds resulted in four diverse chymostatin derivatives that were characterized by NMR and MS analysis. Chymostatins are hydrophobic tetrapeptide aldehydes from streptomycetes, e.g., S. lavendulae and S. hygroscopicus, that reverse chymosin-mediated angiotensin activation and inhibit other serine and cysteine proteases. Chymotrypsin and papain were both inhibited by the SPI ac compounds in the low nanomolar range. SPI ac differs from the characterized chymostatins by the exchange of phenylalanine for tyrosine. The crystal structure of one of these chymostatin variants confirmed its molecular structure and revealed a S-configured hemithioacetal bond with the catalytic Cys25 thiolate as well as close interactions with hydrophobic S1 and S2 subsite amino acids. A model for chymostatin biosynthesis is provided based on the discovery of clustered genes encoding several putative nonribosomal peptide synthetases; among them, there is the unusual CstF enzyme that accommodates two canonical amino acid activation domains as well as three peptide carrier protein domains.
Histone H3K4 methylation serves as post-translational hallmark of actively transcribed genes and is introduced by histone methyltransferases (HMT) and its regulatory scaffolding proteins. One of these is the WD-repeat containing protein 5 (WDR5) that has also been associated with controlling long non-coding RNAs and transcription factors including MYC. The wide influence of dysfunctional HMTs complexes and the typically upregulated MYC levels in diverse tumor types suggested WDR5 as an attractive drug target. Indeed, protein-protein interface inhibitors for two protein interaction interfaces on WDR5 have been developed. While such compounds only inhibit a subset of WDR5 interactions, chemically induced proteasomal degradation of WDR5 might represent an elegant way to target all oncogenic function. This study presents the design, synthesis and evaluation of two diverse WDR5 degrader series based on two WIN site binding scaffolds and shows that linker nature and length strongly influence degradation efficacy.
Casein kinase 2 (CK2) is a constitutively expressed serine/threonine kinase that has a large diversity of cellular substrates. Thus, CK2 has been associated with a plethora of regulatory functions and dysregulation of CK2 has been linked to disease development in particular to cancer. The broad implications in disease pathology makes CK2 an attractive target. To date, the most advanced CK2 inhibitor is silmitasertib, which has been investigated in clinical trials for treatment of various cancers, albeit several off-targets for silmitasertib have been described. To ascertain the role of CK2 inhibition in cancer, other disease and normal physiology the development of a selective CK2 inhibitor would be highly desirable. In this study we explored the pyrazolo[1,5-a]pyrimidine hinge-binding moiety for the development of selective CK2 inhibitors. Optimization of this scaffold, which included macrocyclization, led to IC20 (31) a compound that displayed high in vitro potency for CK2 (KD = 12 nM) and exclusive selectivity for CK2. X-ray analysis revealed a canonical type-I binding mode for IC20. However, the polar carboxylic acid moiety that is shared by many CK2 inhibitors including silmitasertib was required for potency and reduced somewhat cellular activity. In summary, IC20 represents a highly selective and potent inhibitor of CK2, which can be used as a tool compound to study CK2 biology and potential new applications for the treatment of diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.