The ageing of materials is an irreversible, in-time occurring complex phenomenon, which affects both wood surfaces and the coating materials. This paper focuses on the light-induced natural ageing of wood-coated surfaces in indoor conditions. Two wood species: European maple (Acer pseudoplatanus) and European walnut (Juglans regia) and two types of waxes: bees wax and Chinese wax were employed in the experiments presented in this paper. Uncoated and coated wood samples were exposed to the natural sunlight filtered by window glass in a simulated indoors natural ageing test for a total period of 7 years. Colour measurements in the CIE-Lab system and FTIR-ATR investigation were employed to evaluate the ageing phenomena. The uncoated wooden samples underwent progressive colour changes perceived as darkening for European maple and lightening for European walnut, corresponding to total colour differences values (ΔE) after 7 years of exposure of 12.54 and 11.66, respectively. Coating of wood samples with the two types of waxes differently influenced the total colour changes for the two wood species: reduced colour changes corresponding to ΔE values of 4.79–6.44 were determined for European maple, whilst increased colour changes corresponding to ΔE values of 13.80–20.83 were determined for European walnut. FTIR analysis highlighted different surface chemistry changes for the uncoated and wax-coated wood samples.
Color and chemical changes were investigated in beech wood (Fagus sylvatica L.) following light steaming and further heat treatment for 2.5 h at 200 °C by two techniques (industrial ThermoWood versus a laboratory procedure in the presence of air). Colour changes were evaluated in the CIE Lab system, while Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR) investigation was employed to highlight and compare the associated chemical changes. Light steaming caused only minor chemical changes (limited hydrolysis of hemicelluloses) not ready detectable by FTIR. In contrast, heat treatments caused visible changes in the FTIR spectra, especially in the region 1800 to 1500 cm . A significant variation of the ratios of relevant absorption bands indicated complex chemical changes, including hydrolytic, oxidative, and condensation reactions. FTIR ratios and the mass loss values in the two heat treatments relate, both indicating a more advanced modification in the case of the ThermoWood process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.