Hydrogels have been studied as promising materials in different biomedical applications such as cell culture in tissue engineering or in wound healing. In this work, we synthesized different nanocellulose-alginate hydrogels containing cellulose nanocrystals, TEMPO-oxidized cellulose nanocrystals (CNCTs), cellulose nanofibers or TEMPO-oxidized cellulose nanofibers (CNFTs). The hydrogels were freeze-dried and named as gels. The nanocelluloses and the gels were characterized by different techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA), while the biological features were characterized by cytotoxicity and cell growth assays. The addition of CNCTs or CNFTs in alginate gels contributed to the formation of porous structure (diameter of pores in the range between 40 and 150 μm). TEMPO-oxidized cellulose nanofibers have proven to play a crucial role in improving the dimensional stability of the samples when compared to the pure alginate gels, mainly after a thermal post-treatment of these gels containing 50 wt % of CNFT, which significantly increased the Ca2+ crosslinking density in the gel structure. The morphological characteristics, the mechanical properties, and the non-cytotoxic behavior of the CNFT-alginate gels improved bioadhesion, growth, and proliferation of the cells onto the gels. Thus, the alginate-nanocellulose gels might find applications in tissue engineering field, as for instance, in tissue repair or wound healing applications.
Antiradical and cytoprotective activities of several flavanones isolated from Paulownia tomentosa (Thunb.) Steud. (Scrophulariaceae) have been evaluated using different in vitro and in vivo methods. The capacity of flavanones to scavenge radicals was measured in vitro by means of DPPH and ABTS assays, the inhibition of hydroxyl radicals produced in Fenton reactions, FRAP, scavenging superoxide radicals using enzymatic and nonenzymatic assays and the inhibition of peroxynitrite-induced nitration of tyrosine. The in vivo testing involved measuring the cytoprotective effect of chosen flavanones against alloxan-induced diabetes in mice. The activity of tested compounds was expressed either as a Trolox® equivalent or was compared with rutin or morine as known antioxidant compounds. The highest activity in most tests was observed for diplacone and 3´-O-methyl-5´-hydroxydiplacone, and the structure vs. the antioxidant activity relationship of geranyl or prenyl-substituted flavonoids with different substitutions at the B and C ring was discussed.
Leprosy is a chronic infectious disease caused by an obligate intracellular bacterium known as Mycobacterium leprae. Exposure to the bacillus is necessary, but this alone does not mean an individual will develop clinical symptoms of the disease. In recent years, several genes have been associated with leprosy and the innate immune response pathways converge on the main hypothesis that genes are involved in the susceptibility for the disease in two distinct steps: for leprosy per se and in the development of the different clinical forms. These genes participate in the sensing, main metabolic pathway of immune response activation and, subsequently, on the evolution of the disease into its clinical forms. The aim of this review is to highlight the role of innate immune response in the context of leprosy, stressing their participation in the signaling and targeting processes in response to bacillus infection and on the evolution to the clinical forms of the disease.
This study evaluated the fatty acid composition and the nutritional profile of Brycon cephalus and Brycon microlepis, fish species from the central Amazon basin, by different methods of quantification. The methods applied were: area normalization (MAN), internal standard (MIS), alternative theoretical (MAT) and alternative experimental (MAE). Significant differences were observed between the methods applied and the species studied. MAN supplied poor information about fatty acids composition and diet formulation, presenting only fatty acid profiles. MIS, MAT and MAE supplied fatty acids composition information on a mass basis. MAT and MAE overestimated results, whereas MIS presented the most accurate results. B. cephalus and B. microlepis showed high contents of approximately 65 mg g-1 of n-3 fatty acids. Eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) content totaled, 104.37 mg 100 g-1 and 117.89 mg 100 g-1 for B. cephalus and B. microlepis, respectively. The nutritional profile of both fish species showed favorable indices for nutritional quality of the lipid fraction, indicating that both Brycon species are healthy dietary choices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.