A 96-channel microfabricated capillary array electrophoresis (muCAE) device was evaluated for forensic short tandem repeat (STR) typing using PowerPlex 16 and AmpFlSTR Profiler Plus multiplex PCR systems. The high-throughput muCAE system produced high-speed <30-min parallel sample separations with single-base resolution. Forty-eight previously analyzed single-source samples were accurately typed, as confirmed on an ABI Prism 310 and/or the Hitachi FMBIO II. Minor alleles in 3:1 mixture samples containing female and male DNA were reliably typed as well. The instrument produced full profiles from sample DNA down to 0.17 ng, a threshold similar to that found for the ABI 310. Seventeen nonprobative samples from various evidentiary biological stains were also correctly typed. The successful application of the muCAE device to actual forensic STR typing samples is a significant step toward the development of a completely integrated STR analysis microdevice.
Miniaturization of capillary electrophoresis onto a microchip for forensic short tandem repeat analysis is the initial step in the process of producing a fully integrated and automated analysis system. A prototype of the Berkeley microfabricated capillary array electrophoresis device was installed at the Virginia Department of Forensic Science for testing. Instrument performance was verified by PowerPlex Ò 16 System profiling of single source, sensitivity series, mixture, and casework samples. Mock sexual assault samples were successfully analyzed using the PowerPlex Ò Y System. Resolution was assessed using the TH01, CSF1PO, TPOX, and Amelogenin loci and demonstrated to be comparable with commercial systems along with the instrument precision. Successful replacement of the Hjerten capillary coating method with a dynamic coating polymer was performed. The accurate and rapid typing of forensic samples demonstrates the successful technology transfer of this device into a practitioner laboratory and its potential for advancing high-throughput forensic typing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.