Mycotoxin contamination continues to be a food safety concern globally, with the most toxic being aflatoxins. On-farm aflatoxins, during food transit or storage, directly or indirectly result in the contamination of foods, which affects the liver, immune system and reproduction after infiltration into human beings and animals. There are numerous reports on aflatoxins focusing on achieving appropriate methods for quantification, precise detection and control in order to ensure consumer safety. In 2012, the International Agency for Research on Cancer (IARC) classified aflatoxins B1, B2, G1, G2, M1 and M2 as group 1 carcinogenic substances, which are a global human health concern. Consequently, this review article addresses aflatoxin chemical properties and biosynthetic processes; aflatoxin contamination in foods and feeds; health effects in human beings and animals due to aflatoxin exposure, as well as aflatoxin detection and detoxification methods.
Medicinal plants, many of which are wild, have recently been under the spotlight worldwide due to growing requests for natural and sustainable eco-compatible remedies for pathological conditions with beneficial health effects that are able to support/supplement a daily diet or to support and/or replace conventional pharmacological therapy. The main requests for these products are: safety, minimum adverse unwanted effects, better efficacy, greater bioavailability, and lower cost when compared with synthetic medications available on the market. One of these popular herbs is hawthorn (Crataegus spp.), belonging to the Rosaceae family, with about 280 species present in Europe, North Africa, West Asia, and North America. Various parts of this herb, including the berries, flowers, and leaves, are rich in nutrients and beneficial bioactive compounds. Its chemical composition has been reported to have many health benefits, including medicinal and nutraceutical properties. Accordingly, the present review gives a snapshot of the in vitro and in vivo therapeutic potential of this herb on human health.
Over the last few years, the application of nanotechnology to nutraceuticals has been rapidly growing due to its ability to enhance the bioavailability of the loaded active ingredients, resulting in improved therapeutic/nutraceutical outcomes. The focus of this work is nanoprebiotics and nanoprobiotics, terms which stand for the loading of a set of compounds (e.g., prebiotics, probiotics, and synbiotics) in nanoparticles that work as absorption enhancers in the gastrointestinal tract. In this manuscript, the main features of prebiotics and probiotics are highlighted, together with the discussion of emerging applications of nanotechnologies in their formulation. Current research strategies are also discussed, in particular the promising use of nanofibers for the delivery of probiotics. Synbiotic-based nanoparticles represent an innovative trend within this area of interest. As only few experimental studies on nanoprebiotics and nanoprobiotics are available in the scientific literature, research on this prominent field is needed, covering effectiveness, bioavailability, and safety aspects.
The growing global interest in functional foods containing nutrients capable of adding possible beneficial health effects is rapidly increasing both interest and consumer demand. In particular, functionalized beverages for their potential positive effect on health e.g., decreasing cholesterol level, lowering sugar, high fiber content, ability to enhance the immune system, and help digestion, have recently received special attention. Among the different beverages available on the market, probiotic dairy and non-dairy products have attracted much attention because of their affordable cost and their numerous therapeutic activities. Fermented milk and yogurt are currently worth €46 billion, with 77% of the market reported in Europe, North America, and Asia. Consumption of dairy beverages has some limitations due for example to lactose intolerance and allergy to milk proteins, thereby leading consumers to use non-dairy beverages such as fruit, grains, and vegetable juices to add probiotics to diet as well as driving the manufacturers to food matrices-based beverages containing probiotic cultures. The purpose of this review article is to evaluate the therapeutic performance and properties of dairy and non-dairy beverages in terms of probiotic, prebiotic, and synbiotic activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.