Summary The ability of foam to divert gas flow during a long period of gas injection in a surfactant-alternating-gas (SAG) foam process is important for the economics of foam-diversion processes for enhanced oil recovery (EOR). Here, we interpret field data from the foam test in the Cusiana field in Colombia (Ocampo et al. 2013). In this test, surfactant was injected into a single layer that had been taking approximately half the injected gas before the test; then, gas injection resumed into all layers. On the basis of the size of the surfactant slug injected and estimates of adsorption and of water saturation in the foam in situ, we estimate that the treated region extended approximately 5.3 m from the injection well; fortunately, the results to follow are not sensitive to this estimate. On the basis of the change in injection logs before the test and at Day 5 of the test, when approximately 30 pore volumes (PVs) of gas (relative to the volume of the treated zone) had been injected, foam still reduced gas mobility in the treated layer to approximately 11% of its pretrial value. We base this estimate on the decrease of injection into the treated layer and the increase of injection into the other layers; the results are consistent among the layers. After 35 and 152 days of injection (220 and 1,250 treatment PV of gas injected), foam reduced gas mobility in the treated zone to approximately 26 and 50% of its value before the test, respectively. This result indicates that foam continued to reduce mobility by a modest amount even after long injection of gas. On the other hand, foam did weaken progressively as it dried out. Foam models in which foam remains strong at irreducible water saturation would greatly overestimate foam effectiveness at long times in this test. In this test, the large volume of gas had quickly penetrated far beyond the edge of the surfactant bank. Mobility in the foam-treated region in this test, after passage of many treatment PVs of gas injection, mimics that very near the injection well in a process with a larger slug of surfactant.
Well stimulation for production or injection enhancement in mature fields is a key and challenging task. Loss of reservoir energy due to pressure depletion coupled with complex damage scenarios existing in adverse petro physical environments can become restrictive factors for the proper performance of conventional liquid based chemical stimulation systems. Main limitations are normally related to high interfacial tensions preventing optimal well´s clean up and cost-effective achievable penetrations. This work presents a new well stimulation concept in which the carrying system is gas instead of liquid. The overall study will be presented in 2 parts. Part I will discuss basic physical questions related to treatment durability as a function of deployment method (continuous dispersion vs liquid batch gas displacement) for at least two damage scenarios of particular interest: asphaltene deposition and condensate blockage. A basic mechanistic simulation is also presented for benefit estimations at well scale. Part II will focus on field trials design and execution using micellar and/or fluoropolymer type of chemistries that exhibited the best performance when tested under laboratory conditions. Experiments herein presented were done in formation sandstone cores simulating reservoir conditions. It is shown that natural gas when used as the carrying system to deploy conventional asphaltene dissolution and condensate removal chemistries enhances both Ko re-establishment and treatment durability as compared to equivalent liquid-based applications. Additional studies are being performed to maximize the effectiveness of the GaStim concept. Sensibilities to gas type (N2, CO2), added chemical and dosages as long as field trial documentation will be presented in part II of the present work.GaStim concept is presented as a novel chemical stimulation technique potentially allowing deeper penetrations and better chemical adsorptions. Its potential, although still not fully undiscovered, is certainly supported by higher Ko reestablishment values and longer treatment durabilities observed.
A successful field trial of foams as gas injection conformance enhancer has been deployed in the Cusiana field in Colombia, South America. This work describes the Front End Loading (FEL) process done to get to the field trial, the field operation itself, and the results obtained so far. The Foam treatment was deployed in the Mirador formation of the Cusiana field, a low porosity quartzarenite with a recovery factor over 50%.The reservoir fluid is a volatile oil developed under an extensive gas reinjection process. The foam treatment was engineered to improve both the gas injection conformance at the wellbore and also the gas sweep efficiency deep into the reservoir. An extensive FEL including chemical product screening, foam stability at reservoir conditions, coreflood experiments, reservoir modelling, and a careful selection of well candidates was executed for this pilot. The treatment was done in a gas injector well in the northern part of the field, where high RF has already been obtained with high levels of gas recycling. The operation was performed using the SAG method. The foaming surfactant was pumped selectively in front of the dominant injection layer and then the well was put back on injection. The results showed a clear and sustained change in GI conformance reducing the injectivity of the treated layer by 60%. Increase in oil rate along with decreases in GOR was also observed in the nearby oil producers two months after the treatment. Results herein presented confirm the viability of foams as an EOR method for the Cusiana field and at least two other fields located in the same basin and exploited under similar conditions. Introduction The Cusiana field currently operated by Equion Energía Ltd is located in the foothills of the Eastern Mountain chain in Colombia - South America, and started production in 1994. It comprises three stacked reservoirs (Mirador, Barco and Guadalupe) and two compositional fluid systems both being volatile oils with a rich gas cap near critical conditions with pressures and temperatures over 5000 Psia and 250 F respectively (Lee et al, 1996). Initial fluids in place added up to about 1.5 bn STB of oil and over 3 tcf of gas with Mirador formation bearing about 60% of total fluids. Development strategies have included natural depletion, gas recycling, water injection and gas injection redistribution. Gas recycling and re-distribution have provided the best recoveries so far.
This work presents the conceptual development and experimental evaluation for a new technique to create blocking foams in matrix rock systems by the injection of the foaming agent dispersed in the hydrocarbon gas stream. This new technique aims at simplifying the operation and reducing costs for the deployment of EOR foams in gas injection based projects, and overcoming the disadvantage of limited reservoir volume of influence obtained in the SAG technique. A systematic experimental work is implemented to investigate the effect of the dispersed chemical (surfactant) concentration and the gas velocity on the ability to create blocking foams at high pressure and temperature, and using representative consolidated porous medium and fluids coming from the Piedemonte fields in Colombia. The concept behind this new technique is the transfer of chemical foamer from the gas dispersion into the connate or residual waters present in the hydrocarbon reservoirs under exploitation, due mainly to the chemical potential derived from the contrast in chemical concentration between the dispersed phase and the in-situ water. Results herein confirm that it is possible to create blocking foam by this technique in a consolidated sandstone core at residual oil and water conditions, after being submitted to a gas flooding displacement. This condition is obtained as far as the gas velocity is above a minimum threshold, and the concentration of the active chemical is above certain limit (138 ppm for this case). Successful experiments with foams created by gas dispersed surfactant showed much longer stability periods when compared with results from foams created by the SAG technique at much higher chemical concentration (2,000 ppm). Application of this foams technique was done in a field pilot. About 600 Bbls of foaming solution were dispersed in the hydrocarbon gas stream in one gas injector of a Piedemonte field (Colombia, South America). Gas injectivity in the well was impaired after two weeks of injection, and the oil production well influenced by this injector changed its performance showing incremental oil production and flattening of the gas oil ratio (GOR) shortly after the dispersed chemical injection period. This innovative foams technique could also be extended to other non-condensable gases at field operating conditions like CO2, Nitrogen, Air, and Flue Gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.