The impact of diet on inflammation and oxidative stress (OS) in girls with polycystic ovary syndrome (PCOS) is unknown. Therefore, our study aimed to investigate, in PCOS girls, whether certain macronutrient intakes can be associated with these disturbances. For this purpose, 59 PCOS participants (aged 14–18 years) were recruited to this study and divided into two subgroups: overweight/obese—Ov/Ob group (n = 22) and normal weight—N group (n = 37). Nutrition was assessed using a 3-day food record. The studied markers were total antioxidant capacity (TAC), malondialdehyde (MDA), C-reactive protein (CRP), tumor necrosis factor α (TNF-α), and interleukins 1 and 6 (IL-1 and IL-6). We found plant protein intake inversely correlated with IL-6 (p = 0.007; r = −0.557), TNF-α (p = 0.006; r = −0.564), MDA (p = 0.01; r = −0.539) in the Ov/Ob group and with TAC (p = 0.021; r = −0.38) in the N group. Inverse correlations in the Ov/Ob group were observed between protein intake and IL-6 (p = 0.031; r = −0.461), TNF- α (p = 0.043; r = −0.435); carbohydrates and IL-6 (p = 0.037; r = −0.448), MDA (p = 0.045; r = −0.431); fiber and IL-6 (p = 0.025; r = −0.475). A positive relationship between cholesterol intake and CRP concentration (p = 0.038; r = 0.342) was also found in the N group. These findings revealed that inflammation and OS are increased in Ov/Ob girls with decreased plant protein intake and low carbohydrates in the diet. Moreover, inflammation may be increased by cholesterol intake in slim PCOS girls. On the other hand, decreased intake of fiber and total protein intake increased inflammation. ClinicalTrials.gov Identifier: NCT04738409.
Insulin resistance (IR) may be associated with oxidative stress and leads to cardiovascular disorders. Current research focuses on interplay between insulin-resistance indices and oxidant-antioxidant markers in elderly individuals with or without insulin-resistance. The assessment involved anthropometric data (weight, height, BMI, percentage of body fat (FAT)) and biochemical tests (glucose, lipids, serum insulin and plasma oxidant-antioxidant markers: Thiobarbituric Acid-Reacting Substances (TBARS), Cu,Zn-superoxide dismutase (SOD-1) and total antioxidant status). Insulin resistance index (IR) assuming a cut-off point of 0.3 allows to divides groups into: insulin sensitive group (InsS) IR < 0,3 ( n = 35, median age 69.0 years) and insulin-resistant group (InsR) IR ≥ 0.3 ( n = 51, median age 71.0 years). Lipids and antioxidant defense system markers did not differentiate the investigated groups. In the InsR elderly group, the FAT was increased ( P < 0.000003) and TBARS ( P = 0.008) concentration decreased in comparison with InsS group. A positive correlation for SOD-1 and total antioxidant status ( P < 0.05; r = 0.434) and a negative correlation for TBARS and age ( P < 0.05 with r = −0.421) were calculated in InsR individuals. In elderly individuals, oxidative stress persists irrespective of insulin-resistance status. We suggest that increased oxidative stress may be consequence of old age. An insulin action identifies those at high risk for atherosclerosis, via congruent associations with oxidative stress and extra- and intra-cellular antioxidant defense systems. Thus, we maintain that insulin-resistance is not the cause of aging. Impact statement Insulin resistance is associated with oxidative stress leading to cardiovascular diseases. However, little research has been performed examining elderly individuals with or without insulin-resistance. We demonstrate that antioxidant defense systems alone is not able to abrogate insulin action in elderly individuals at high risk for atherosclerosis, whereas the combined oxidant-antioxidant markers (thiobarbituric acid-reacting substances (TBARS), Cu,Zn-superoxide dismutase (SOD-1), and total antioxidant status (TAS)) might be more efficient and perhaps produce better clinical outcome. In fact, a decrease in oxidative stress and strong interaction between antioxidant defense can be seen only among insulin-resistant elderly individuals. This is, in our opinion, valuable information for clinicians, since insulin-resistance is considered strong cardiovascular risk factor.
Students experience different levels of acute and chronic stress during the academic year. Selected salivary biochemical parameters change as a result of stress. Our preliminary study aimed to indicate possible links between alterations in the salivary biochemical parameters (such as cortisol and total antioxidant status) and different accompanying stress levels in dental students during the academic year. The study group consisted of 20 volunteer dental students at the Poznan University of Medical Sciences—both genders, aged 20–26 years. Students were asked to fill in the electronic version of the author’s survey on experiencing and coping with stress. Samples of unstimulated saliva were collected in the morning and late evening at four-time points: in the middle of the academic year, during the examination period, at the beginning of the academic year, and in the middle of the following academic year, together with a determination of currently experienced stress on the Stress Numerical Rating Scale-11. According to the circadian rhythm of cortisol secretion, morning levels of the hormone in saliva were much higher than in the evening. In evening cortisol, significant differences were observed during the studied periods—the highest level was found at the beginning of the academic year. However, the morning cortisol concentrations correlated more strongly with the declared stress levels and showed better predictability for high-stress levels. Salivary morning cortisol could be a potential marker of academic stress levels. Further studies are needed on a larger group to confirm.
The ability to diagnose acid–base imbalances correctly is essential for physicians and other healthcare workers. Despite its importance, it is often considered too complex and confusing. Although most people dealing with arterial blood gases (ABGs) do not usually have problems with acid–base disorder assessment, such an analysis is also carried out by other healthcare workers for whom this can be a challenging task. Many aspects may be problematic, partly due to multiple data analysis methods and no definitive statement on which one is better. According to our survey, the correctness of arterial blood gas analysis is unsatisfactory, especially in mixed disorders, which do not always manifest an obvious set of symptoms. Therefore, ABG parameters can be used as an established biomarker panel, which is considered to be a powerful tool for personalized medicine. Moreover, using different approaches to analyze acid–base disorders can lead to varying diagnoses in some cases. Because of these problems, we developed a mobile application that can spot diagnostic differences by taking into account physiological and chemical approaches, including their variants, with a corrected anion gap. The proposed application is characterized by a high percentage of correct analyses and can be an essential aid for diagnosing acid–base disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.