Nature 414, 173-179 (2001) This Article described patterns of labelling observed in olfactory cortex when a transneuronal tracer was co-expressed with single odorant receptor genes in the mouse olfactory epithelium. During efforts to replicate and extend this work, we have been unable to reproduce the reported findings. Moreover, we have found inconsistencies between some of the figures and data published in the paper and the original data. We have therefore lost confidence in the reported conclusions. We regret any adverse consequences that may have resulted from the paper's publication.
Millions of people worldwide suffer from diseases that lead to paralysis through disruption of signal pathways between the brain and the muscles. Neuroprosthetic devices are designed to restore lost function and could be used to form an electronic 'neural bypass' to circumvent disconnected pathways in the nervous system. It has previously been shown that intracortically recorded signals can be decoded to extract information related to motion, allowing non-human primates and paralysed humans to control computers and robotic arms through imagined movements. In non-human primates, these types of signal have also been used to drive activation of chemically paralysed arm muscles. Here we show that intracortically recorded signals can be linked in real-time to muscle activation to restore movement in a paralysed human. We used a chronically implanted intracortical microelectrode array to record multiunit activity from the motor cortex in a study participant with quadriplegia from cervical spinal cord injury. We applied machine-learning algorithms to decode the neuronal activity and control activation of the participant's forearm muscles through a custom-built high-resolution neuromuscular electrical stimulation system. The system provided isolated finger movements and the participant achieved continuous cortical control of six different wrist and hand motions. Furthermore, he was able to use the system to complete functional tasks relevant to daily living. Clinical assessment showed that, when using the system, his motor impairment improved from the fifth to the sixth cervical (C5-C6) to the seventh cervical to first thoracic (C7-T1) level unilaterally, conferring on him the critical abilities to grasp, manipulate, and release objects. This is the first demonstration to our knowledge of successful control of muscle activation using intracortically recorded signals in a paralysed human. These results have significant implications in advancing neuroprosthetic technology for people worldwide living with the effects of paralysis.
Psychiatric neurosurgery teams in the United States and Europe have studied deep brain stimulation (DBS) of the ventral anterior limb of the internal capsule and adjacent ventral striatum (VC/VS) for severe and highly treatment-resistant obsessive-compulsive disorder. Four groups have collaborated most closely, in small-scale studies, over the past 8 years. First to begin was Leuven/Antwerp, followed by Butler Hospital/Brown Medical School, the Cleveland Clinic and most recently the University of Florida. These centers used comparable patient selection criteria and surgical targeting. Targeting, but not selection, evolved during this period. Here, we present combined long-term results of those studies, which reveal clinically significant symptom reductions and functional improvement in about two-thirds of patients. DBS was well tolerated overall and adverse effects were overwhelmingly transient. Results generally improved for patients implanted more recently, suggesting a 'learning curve' both within and across centers. This is well known from the development of DBS for movement disorders. The main factor accounting for these gains appears to be the refinement of the implantation site. Initially, an anterior-posterior location based on anterior capsulotomy lesions was used. In an attempt to improve results, more posterior sites were investigated resulting in the current target, at the junction of the anterior capsule, anterior commissure and posterior ventral striatum. Clinical results suggest that neural networks relevant to therapeutic improvement might be modulated more effectively at a more posterior target. Taken together, these data show that the procedure can be successfully implemented by dedicated interdisciplinary teams, and support its therapeutic promise.
Background We investigated the use of deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) for treatment refractory depression. Methods Fifteen patients with chronic, severe, highly refractory depression received open-label DBS at three collaborating clinical sites. Electrodes were implanted bilaterally in the VC/VS region. Stimulation was titrated to therapeutic benefit and the absence of adverse effects. All patients received continuous stimulation and were followed for a minimum of 6 months to longer than 4 years. Outcome measures included the Hamilton Depression Rating Scale—24 item (HDRS), the Montgomery-Asberg Depression Rating Scale (MADRS), and the Global Assessment of Function Scale (GAF). Results Significant improvements in depressive symptoms were observed during DBS treatment. Mean HDRS scores declined from 33.1 at baseline to 17.5 at 6 months and 14.3 at last follow-up. Similar improvements were seen with the MADRS (34.8, 17.9, and 15.7, respectively) and the GAF (43.4, 55.5, and 61.8, respectively). Responder rates with the HDRS were 40% at 6 months and 53.3% at last follow-up (MADRS: 46.7% and 53.3%, respectively). Remission rates were 20% at 6 months and 40% at last follow-up with the HDRS (MADRS: 26.6% and 33.3%, respectively). The DBS was well-tolerated in this group. Conclusions Deep brain stimulation of the VC/VS offers promise for the treatment of refractory major depression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.