Longitudinal, remote monitoring of motor symptoms in Parkinson’s disease (PD) could enable more precise treatment decisions. We developed the Motor fluctuations Monitor for Parkinson’s Disease (MM4PD), an ambulatory monitoring system that used smartwatch inertial sensors to continuously track fluctuations in resting tremor and dyskinesia. We designed and validated MM4PD in 343 participants with PD, including a longitudinal study of up to 6 months in a 225-subject cohort. MM4PD measurements correlated to clinical evaluations of tremor severity (ρ = 0.80) and mapped to expert ratings of dyskinesia presence (P < 0.001) during in-clinic tasks. MM4PD captured symptom changes in response to treatment that matched the clinician’s expectations in 94% of evaluated subjects. In the remaining 6% of cases, symptom data from MM4PD identified opportunities to make improvements in pharmacologic strategy. These results demonstrate the promise of MM4PD as a tool to support patient-clinician communication, medication titration, and clinical trial design.
Heart function measured by electrocardiograms (ECG) is crucial for patient care. ECG generated waveforms are used to find patterns of irregularities in cardiac cycles in patients. In many cases, irregularities evolve over an extended period of time that requires continuous monitoring. However, this requires wireless ECG recording devices. These devices consist of an enclosed system that includes electrodes, processing circuitry, and a wireless communication block imposing constraints on area, power, bandwidth, and resolution. In order to provide continuous monitoring of cardiac functions for real-time diagnostics, we propose a methodology that combines compression and analysis of heartbeats. The signal encoding scheme is the time-based integrate and fire sampler. The diagnostics can be performed directly on the samples avoiding reconstruction required by the competing finite rate of innovation and compressed sensing. As an added benefit, our scheme provides an efficient hardware implementation and a compressed representation for the ECG recordings, while still preserving discriminative features. We demonstrate the performance of our approach through a heartbeat classification application consisting of normal and irregular heartbeats known as arrhythmia. Our approach that uses simple features extracted from ECG signals is comparable to results in the published literature.
Abstract. In this paper we study the reconstruction of a bandlimited signal from samples generated by the integrate and fire model. This sampler allows us to trade complexity in the reconstruction algorithms for simple hardware implementations, and is specially convenient in situations where the sampling device is limited in terms of power, area and bandwidth.Although perfect reconstruction for this sampler is impossible, we give a general approximate reconstruction procedure and bound the corresponding error. We also show the performance of the proposed algorithm through numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.