Antibody–drug
conjugates (ADCs) are a new class of anticancer
therapeutics that combine the selectivity of targeted treatment, ensured
by monoclonal antibodies, with the potency of the cytotoxic agent.
Here, we applied an analogous approach, but instead of an antibody,
we used fibroblast growth factor 2 (FGF2). FGF2 is a natural ligand
of fibroblast growth factor receptor 1 (FGFR1), a cell-surface receptor
reported to be overexpressed in several types of tumors. We developed
and characterized FGF2 conjugates containing a defined number of molecules
of highly cytotoxic drug monomethyl auristatin E (MMAE). These conjugates
effectively targeted FGFR1-expressing cells, were internalized upon
FGFR1-mediated endocytosis, and, in consequence, revealed high cytotoxicity,
which was clearly related to the FGFR1 expression level. Among the
conjugates tested, the most potent was that bearing three MMAE molecules,
showing that the cytotoxicity of protein–drug conjugates in
vitro is directly dependent on drug loading.
Targeted delivery of anticancer drugs using antibodies specific for tumor-associated antigens represents one of the most important approaches in current immuno-oncology research. Fibroblast growth factor receptor 1 (FGFR1) has been demonstrated to be a high-frequency targetable oncogene specific for smokingassociated lung cancers, present in over 20% of lung squamous cell carcinoma cases. This report describes the generation of a potent, fully human antibody fragment in scFv-Fc format efficiently targeting FGFR1. Antibody phage display was used to select high-affinity scFv antibody fragments against the extracellular domain of FGFR1(IIIc). Enzyme immunoassay (ELISA) and surface plasmon resonance (SPR) analysis were used for antibody screening and characterization. The best binder (named D2) was cloned to diabody and Fc fusion formats. All D2 antibodies demonstrated high affinity for FGFR1 with dissociation constants of 18 nmol/L (scFvD2), 0.82 nmol/L (scFvD2 diabody), and 0.59 nmol/L (scFvD2-Fc). scFvD2 was found to be exquisitely selective for FGFR1 versus other FGFR family members and bound FGFR1 even in the presence of its natural ligand FGF2, as shown by competitive analysis. Confocal microscopy revealed that scFvD2-Fc was specifically and rapidly internalized by a panel of cell lines overexpressing FGFR1. Finally, it was demonstrated that scFvD2-Fc mediated specific delivery of a cytotoxic payload into lung cancer cells harboring oncogenic FGFR1 gene amplifications.Implications: This study reports a highly specific internalizing antibody fragment that can serve as a therapeutic targeting agent for efficient delivery of cytotoxic drugs into FGFR1-positive lung cancer cells. Mol Cancer Res; 15(8); 1040-50. Ó2017 AACR.
Fibroblast growth factors (FGFs) and their plasma membrane-localized receptors (FGFRs) play a key role in the regulation of developmental processes and metabolism. Aberrant FGFR signaling is associated with the progression of serious metabolic diseases and human cancer. Binding of FGFs to FGFRs induces receptor dimerization and transphosphorylation of FGFR kinase domains that triggers activation of intracellular signaling pathways. Following activation, FGFRs undergo internalization and subsequent lysosomal degradation, which terminates transmission of signals. Although factors that regulate FGFR endocytosis are continuously discovered, little is known about the molecular mechanism that initiates the internalization of FGFRs. Here, we analyzed the internalization of antibody fragments in various formats that target FGFR1. We show that FGFR1-specific antibody fragments in the monovalent scFv format bind to FGFR1, but are not internalized into cells that overproduce FGFR1. In contrast, the same scFv proteins in the bivalent scFv-Fc format are efficiently internalized via FGFR1-mediated, clathrin and dynamin dependent endocytosis. Interestingly, the receptor tyrosine kinase activity is dispensable for endocytosis of scFv-Fc-FGFR1 complexes, suggesting that only dimerization of receptor is required to trigger endocytosis of FGFR1 complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.