The development of highly efficient non-viral gene vector systems has very important application value in the field of cancer therapy. The high protein content of proteolipids allows for high biocompatibility, low immunogenicity, and surface modification of proteins to confer more targeted drug/gene function. For the first time, this study selected transferrin, which has hepatocellular carcinoma cell targeting function, with a liposome backbone material to construct transferrin liposome (Tf-PL), and load acetylcholinesterase (AChE) therapeutic gene for in vitro and in vivo functions evaluation. The results showed that the Tf-PL transfection efficiency was higher than that of commercial Lipo 2000, low cytotoxicity and targeted ability to liver cancer SMMC-7721 cells. After tail vein injection, Tf-PL/AChE can effectively target to liver cancer, significantly inhibiting the growth of liver cancer xenografts in nude mice, prolonging the survival time of tumor-bearing nude mice, and also does not cause significant systemic toxicities. Our study provides a strategy for proteolipids targeting the transferrin receptor to carry therapeutic gene therapy for tumors. This method has strong tumor affinity and can provide an effective vector selection for precise tumor therapy.