Progresses in the areas of artificial intelligence, machine learning, and medical imaging technologies have allowed the development of the medical image processing field with some astonishing results in the last two decades. These innovations enabled the clinicians to view the human body in highresolution or three-dimensional cross-sectional slices, which resulted in an increase in the accuracy of the diagnosis and the examination of patients in a non-invasive manner. The fundamental step for magnetic resonance imaging (MRI) brain scans classifiers is their ability to extract meaningful features. As a result, many works have proposed different methods for features extraction to classify the abnormal growths in the brain MRI scans. More recently, the application of deep learning algorithms to medical imaging leads to impressive performance enhancements in classifying and diagnosing complicated pathologies, such as brain tumors. In this paper, a deep learning feature extraction algorithm is proposed to extract the relevant features from MRI brain scans. In parallel, handcrafted features are extracted using the modified gray level co-occurrence matrix (MGLCM) method. Subsequently, the extracted relevant features are combined with handcrafted features to improve the classification process of MRI brain scans with support vector machine (SVM) used as the classifier. The obtained results proved that the combination of the deep learning approach and the handcrafted features extracted by MGLCM improves the accuracy of classification of the SVM classifier up to 99.30%.
Fog nodes are implemented near to end‐users Internet of Things (IoT) devices, which mitigate the impact of low latency, location awareness, and geographic distribution unsupported features of many IoT applications. Moreover, Fog computing decreases the data offload into the Cloud, which decreases the response time. Despite these benefits, Fog computing faces many challenges in meeting security and privacy requirements. These challenges occur due to the limitations of Fog computing resources. In fact, Fog computing may add new security and privacy issues. Although many papers have discussed the Fog security and privacy issues recently, most of these papers have discussed these issues at a very high level. This paper provides a comprehensive understanding of Fog privacy and security issue. In this survey, we review the literature on Fog computing to draw the state‐of‐the‐art of the security and privacy issues raised by Fog computing. The findings of this survey reveal that studying Fog computing is still in its infant stage. Many questions are yet to be answered to address the privacy and security challenges of Fog computing.
The Internet of things model enables a world in which all of our everyday devices can be integrated and communicate with each other and their surroundings to gather and share data and simplify task implementation. Such an Internet of things environment would require seamless authentication, data protection, stability, attack resistance, ease of deployment, and self-maintenance, among other things. Blockchain, a technology that was born with the cryptocurrency Bitcoin, may fulfill Internet of things requirements. However, due to the characteristics of both Internet of things devices and Blockchain technology, integrating Blockchain and the Internet of things can cause several challenges. Despite a large number of papers that have been published in the field of Blockchain and the Internet of things, the problems of this combination remain unclear and scattered. Accordingly, this paper aims to provide a comprehensive survey of the challenges related to Blockchain–Internet of things integration by evaluating the related peer-reviewed literature. The paper also discusses some of the recommendations for reducing the effects of these challenges. Moreover, the paper discusses some of the unsolved concerns that must be addressed before the next generation of integrated Blockchain–Internet of things applications can be deployed. Lastly, future trends in the context of Blockchain–Internet of things integration are discussed.
<span lang="EN-US">Due to the expansion growth of the IoT devices, Fog computing was proposed to enhance the low latency IoT applications and meet the distribution nature of these devices. However, Fog computing was criticized for several privacy and security vulnerabilities. This paper aims to identify and discuss the security challenges for Fog computing. It also discusses blockchain technology as a complementary mechanism associated with Fog computing to mitigate the impact of these issues. The findings of this paper reveal that blockchain can meet the privacy and security requirements of fog computing; however, there are several limitations of blockchain that should be further investigated in the context of Fog computing.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.