Recent studies and research have centred on new solutions in different elements and stages to the increasing energy and data rate demands for the fifth generation and beyond (B5G). Based on a new-efficient digital beamforming approach for 5G wireless communication networks, this work offers a compact-size circular patch antenna operating at 60 GHz and covering a 4 GHz spectrum bandwidth. Massive Multiple Input Multiple Output (M–MIMO) and beamforming technology build and simulate an active multiple beams antenna system. Thirty-two linear and sixty-four planar antenna array configurations are modelled and constructed to work as base stations for 5G mobile communication networks. Furthermore, a new beamforming approach called Projection Noise Correlation Matrix (PNCM) is presented to compute and optimise the fed weights of the array elements. The key idea of the PNCM method is to sample a portion of the measured noise correlation matrix uniformly in order to provide the best representation of the entire measured matrix. The sampled data will then be utilised to build a projected matrix using the pseudoinverse approach in order to determine the best fit solution for a system and prevent any potential singularities caused by the matrix inversion process. The PNCM is a low-complexity method since it avoids eigenvalue decomposition and computing the entire matrix inversion procedure and does not require including signal and interference correlation matrices in the weight optimisation process. The suggested approach is compared to three standard beamforming methods based on an intensive Monte Carlo simulation to demonstrate its advantage. The experiment results reveal that the proposed method delivers the best Signal to Interference Ratio (SIR) augmentation among the compared beamformers.
The UK financial sector increasingly employs machine learning techniques to enhance revenue and understand customer behaviour. In this study, we develop a machine learning workflow for high classification accuracy and improved prediction confidence using a binary classification approach on a publicly available dataset from a Portuguese financial institution as a proof of concept. Our methodology includes data analysis, transformation, training, and testing machine learning classifiers such as Naïve Bayes, Decision Trees, Random Forests, Support Vector Machines, Logistic Regression, Artificial Neural Networks, AdaBoost, and Gradient Descent. We use stratified k-folding (k=5) cross-validation and assemble the top-performing classifiers into a decision-making committee, resulting in over 92% accuracy with two-thirds voting confidence. The workflow is simple, adaptable, and suitable for UK banks, demonstrating the potential for practical implementation and data privacy. Future work will extend our approach to UK banks, reformulate the problem as a multi-class classification, and introduce pre-training automated steps for data analysis and transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.