The plants belonging to the Ericaceae family are morphologically diverse and widely distributed groups of plants. They are typically found in soil with naturally poor nutrient status. The objective of the current study was to identify cultivable mycobionts from roots of nine species of Ericaceae (Calluna vulgaris, Erica arborea, Erica australis, Erica umbellate, Erica scoparia, Erica multiflora, Arbutus unedo, Vaccinium myrtillus, and Vaccinium corymbosum). The sequencing approach was used to amplify the Internal Transcribed Spacer (ITS) region. Results from the phylogenetic analysis of ITS sequences stored in the Genbank confirmed that most of strains (78) were ascomycetes, 16 of these were closely related to Phialocephala spp, 12 were closely related to Helotiales spp and 6 belonged to various unidentified ericoid mycorrhizal fungal endophytes. Although the isolation frequencies differ sharply according to regions and ericaceous species, Helotiales was the most frequently encountered order from the diverse assemblage of associated fungi (46.15%), especially associated with C. vulgaris (19.23%) and V. myrtillus (6.41%), mostly present in the Loge (L) and Mellousa region (M). Moreover, multiple correspondence analysis (MCA) showed three distinct groups connecting fungal order to ericaceous species in different regions.
In order to increase genetic variability for the improvement of groundnut, two varieties, namely Kp29 and Fleur11, were treated with six different gamma irradiation doses. A significant effect of mutagenesis was distinctly observed in the stem lengths, roots, and survival percentage in both varieties. The radio-sensitivity test showed a mean lethal dose of 436.51Gy for Kp29 and 501.18 Gy for Fleur11. Furthermore, this study revealed putative mutants with variable agro-morphological traits. Seven chlorophyll mutants and various seed shape and color mutants were obtained. This study demonstrates the potency of gamma irradiation to induce high genetic variability that led to the emergence of certain mutations of economic importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.