SummaryThe XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low‐ and high‐level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose‐dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β‐lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5′ untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system.
Bacterial alginate initially consists of 1–4-linked β-D-mannuronic acid residues (M) which can be later epimerized to α- L -guluronic acid (G). The family of AlgE mannuronan C-5-epimerases from Azotobacter vinelandii has been extensively studied, and three genes putatively encoding AlgE-type epimerases have recently been identified in the genome of Azotobacter chroococcum . The three A. chroococcum genes, here designated AcalgE1 , AcalgE2 and AcalgE3 , were recombinantly expressed in Escherichia coli and the gene products were partially purified. The catalytic activities of the enzymes were stimulated by the addition of calcium ions in vitro. AcAlgE1 displayed epimerase activity and was able to introduce long G-blocks in the alginate substrate, preferentially by attacking M residues next to pre-existing G residues. AcAlgE2 and AcAlgE3 were found to display lyase activities with a substrate preference toward M-alginate. AcAlgE2 solely accepted M residues in the positions − 1 and + 2 relative to the cleavage site, while AcAlgE3 could accept either M or G residues in these two positions. Both AcAlgE2 and AcAlgE3 were bifunctional and could also catalyze epimerization of M to G. Together, we demonstrate that A. chroococcum encodes three different AlgE-like alginate-modifying enzymes and the biotechnological and biological impact of these findings are discussed.
Background Bacteria are widely used as hosts for recombinant protein production due to their rapid growth, simple media requirement and ability to produce high yields of correctly folded proteins. Overproduction of recombinant proteins may impose metabolic burden to host cells, triggering various stress responses, and the ability of the cells to cope with such stresses is an important factor affecting both cell growth and product yield. Results Here, we present a versatile plasmid-based reporter system for efficient analysis of metabolic responses associated with availability of cellular resources utilized for recombinant protein production and host capacity to synthesize correctly folded proteins. The reporter plasmid is based on the broad-host range RK2 minimal replicon and harbors the strong and inducible XylS/ Pm regulator/promoter system, the ppGpp-regulated ribosomal protein promoter P rpsJ , and the σ 32 -dependent synthetic tandem promoter P ibpfxs , each controlling expression of one distinguishable fluorescent protein. We characterized the responsiveness of all three reporters in Escherichia coli by quantitative fluorescence measurements in cell cultures cultivated under different growth and stress conditions. We also validated the broad-host range application potential of the reporter plasmid by using Pseudomonas putida and Azotobacter vinelandii as hosts. Conclusions The plasmid-based reporter system can be used for analysis of the total inducible recombinant protein production, the translational capacity measured as transcription level of ribosomal protein genes and the heat shock-like response revealing aberrant protein folding in all studied Gram-negative bacterial strains. Electronic supplementary material The online version of this article (10.1186/s12934-019-1128-7) contains supplementary material, which is available to authorized users.
Background Advantages of translocation of recombinant proteins to the periplasm in Escherichia coli include simplified downstream processing, and improved folding and in vivo activity of the target protein. There are, however, problems encountered in the periplasmic production that can be associated with the incorrect formation of disulfide bonds, incomplete cleavage of the signal peptide, and proteolytic degradation. A common strategy used to overcome these difficulties involves manipulating the cellular levels of proteases and periplasmic folding assistants like chaperones, signal peptide peptidases or thiol-disulfide oxidoreductases. To date, this has been achieved by plasmid-based over-expression or knockouts of the relevant genes. Results We changed the translation efficiencies of five native E. coli proteins, DsbA, DsbB, Skp, SppA, and DegP, by modifying the strength of their ribosome binding sites (RBS). The genomic RBS sequences were replaced with synthetic ones that provided a predicted translation initiation rate. Single- and double-gene mutant strains were created and tested for production of two pharmaceutically relevant proteins, PelB-scFv173–2-5-AP and OmpA-GM-CSF. Almost all the single-gene mutant strains showed improved periplasmic production of at least one of the recombinant proteins. No further positive effects were observed when the mutations were combined. Conclusions Our findings confirm that our strain engineering approach involving translational regulation of endogenous proteins, in addition to plasmid-based methods, can be used to manipulate the cellular levels of periplasmic folding assistants and proteases to improve the yields of translocated recombinant proteins. The positive effects of SppA overexpression should be further investigated in E. coli.
Metallurgy processes are associated with many hazardous and toxic factors, including heavy metals. Exposure to heavy metals can cause damage to different organs, which can be observed through variation in the concentration of proteins in serum. The aim of this study was to evaluate the changes in a serum protein profile of copper smelters exposed to As, Cd and Pb ions, and xenobiotics present in tobacco smoke. A 2.3-fold higher Pb concentration in the blood and a 2.8-fold greater As concentration have been observed in the urine of nonsmoking smelters compared to a control group. In the blood of smoking smelters, Cd concentration was 2-fold higher than in non-smoking ones. Serum proteins were separated by capillary electrophoresis, and in the group of non-smoking smelters, a higher amount of α 1 -globulins was observed. In the group of smoking smelters, fewer α 1 -globulins were noted. Furthermore, a greater amount of α 2 -globulins in the serum of smoking and non-smoking workers in relation to the control group was revealed. A positive correlation between the concentration of Cd in the blood and the content of a fraction containing α 1 -and α 2 -globulins was revealed. Urine Cd concentration was found to be negatively associated with the α 1 -and α 2 -globulins fraction. Observed abnormalities in the proteins profiles of smelters can be important markers when assessing exposure to heavy metals and in the early diagnosis of diseases caused by them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.