We have designed a thermoelectric heat exchanger (TEHE) for microbial fermentations that is able to produce electric power from a microbial continuous culture using the intrinsic heat generated by microbial growth. While the TEHE was connected, the system proved able to stably self-maintain both the temperature and the optical density of the culture. This paves the way toward a more sustainable operation of microbial fermentations, in which energy could be saved by converting part of the metabolic heat into usable electric power.
We have designed a thermoelectric heat exchanger (TEHE) for microbial fermentations, able to control the temperature of a microbial continuous culture, and produce electric power. The system proved able to stably maintain both the temperature and the optical density of the culture during the exponential, highly productive phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.