A demonstrator plant of a recently patented process for improved sludge degradation has been implemented on a municipal scale. In a 1500 m3 sewage sludge digester, an intermediary stage with aerobic sewage sludge reactivation was implemented. This oxic activation increased the biogas yield by up to 55% with a 25% reduction of the remaining fermentation residue volume. Furthermore, this process allowed an NH4-N removal of over 90%. Additionally, 16S rRNA gene amplicon high-throughput sequencing of the reactivated digestate showed a reduced number of methane-forming archaea compared to the main digester. Multiple ammonium-oxidizing bacteria were detected. This includes multiple genera belonging to the family Chitinophagaceae (the highest values reached 18.8% of the DNA sequences) as well as a small amount of the genus Candidatus nitrosoglobus (<0.3%). In summary, the process described here provides an economically viable method to eliminate nitrogen from sewage sludge while achieving higher biogas yields and fewer potential pathogens in the residuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.