Human immunodeficiency virus dementia (HIV-D) is a nonfocalcentral nervous system manifestation characterized by cognitive, behavioral, and motor abnormalities. The pathophysiology of neuronal damage in HIV-D includes a direct toxic effect of viral proteins on neuronal cells and an indirect effect caused by the release of inflammatory mediators and neurotoxins by activated macrophages/microglia and astrocytes, culminating into neuronal apoptosis. Previous studies have documented that the nucleoside adenosine mediates neuroprotection by activating adenosine A 1 receptor subtype (A 1 AR) linked to suppression of neuronal excitability. In this study, we show that A 1 AR activation protects against HIV-1 Tat-induced toxicity in primary cultures of rat cerebellar granule neurons and in rat pheochromocytoma (PC12) cell. In PC12 cells, HIV-1 Tat increased [Ca 2ϩ ] i levels, release of nitric oxide (NO), and expression of inducible nitric-oxide synthase (iNOS) and A 1 AR. Activation of A 1 AR suppressed Tat-mediated increases in [Ca 2ϩ ] i and NO. Furthermore, A 1 AR agonists inhibited iNOS expression in a nuclear factor-B (NF-B)-dependent manner. It is noteworthy that activation of the A 1 AR or inhibition of NOS protected against Tat-induced apoptosis in PC12 cells and cerebellar granule cells. Moreover, activation of the A 1 AR-inhibited Tat-induced increases in the levels of proapoptotic proteins Bax and caspase-3. Taken together, our results demonstrate that the A 1 AR protects against HIV-1 toxicity by inhibiting NF-B, thereby reducing the expression of iNOS and NO radicals and neuronal apoptosis.
Nerve growth factor (NGF) induces differentiation of the rat pheochromocytoma clone (PC12) by activating the high affinity receptor, p140(trkA), linked to mitogen-activated protein kinase. While the physiological role of the low affinity NGF receptor (p75) has not been clearly defined, this receptor promotes activation of nuclear factor (NF) kappaB in Schwann cells. PC12 cells express the A(2A) adenosine receptor (AR), whose expression is significantly decreased by NGF treatment. In this study, we determined whether TrkA or p75 is involved in NGF-mediated regulation of A(2A)AR expression. NGF treatment decreased A(2A)AR in a time-dependent manner, with maximal effects observed by 1 day, and continued down-regulation of the receptor for up to 3 days in the presence of NGF. The decrease in A(2A)AR was associated with a more delayed decrease in the steady-state levels of the A(2A)AR mRNA. Down-regulation of the A(2A)AR at 1 day was mimicked by activators of NFkappaB, such as H(2)O(2), and ceramide, and was attenuated by the inhibitor pyrrolidine dithiocarbamate or following transient transfection of PC12 cells with a dominant negative IkappaBalpha mutant. Moreover, NGF stimulated nuclear accumulation of p65 subunits of NFkappaB (but not p50 subunits) in PC12 cells, as determined by electrophoretic mobility shift assays and by Western blotting. In contrast, inhibition of TrkA by AG879 or of TrkA-dependent mitogen-activated protein kinase mitogen-activated protein kinase kinase with PD98059 blocked PC12 cell differentiation without affecting A(2A)AR down-regulation, suggesting dissociation between these two phenomena. Taken together, these data provide strong support for the involvement of the p75/NFkappaB pathway in NGF-mediated down-regulation of A(2A)AR in PC12 cells.
Expression of the kappa immunoglobulin light chain gene requires developmental- and tissue-specific regulation by trans-acting factors which interact with two distinct enhancer elements. A new protein-DNA interaction has been identified upstream of the intron enhancer, within the matrix-associated region of the J-C intron. The binding activity is greatly inducible in pre-B cells by bacterial lipopolysaccharide and interleukin-1 but specific complexes are found at all stages of B cell development tested. The footprinted binding site is homologous to the consensus AP1 motif. The protein components of this complex are specifically competed by an AP1 consensus motif and were shown by supershift to include c-Jun and c-Fos, suggesting that this binding site is an AP1 motif and that the Jun and Fos families of transcription factors play a role in the regulation of the kappa light chain gene. Mutation of the AP1 motif in the context of the intron enhancer was shown to decrease enhancer-mediated activation of the promoter in both pre-B cells induced with LPS and constitutive expression in mature B cells.
The large intron of the kappa immunoglobulin gene contains a cis-acting enhancer element, which is important in the tissue-specific expression of the gene. We have confirmed the binding activity of a sequence-specific factor present in lymphoid extracts derived from cell lines expressing, or induced to express, the kappa gene. We have extended these studies to show the binding activity is present in normal activated splenic B cells as well as lambda producing cells, and have demonstrated by DNAse footprint analysis full protection of a sequence containing the 11 bp homology to the SV-40 core enhancer. We have compared these in vitro binding studies with an analysis of protein-DNA interactions in intact murine cell lines using genomic sequencing techniques. We demonstrate significant alterations in DMS reactivity of DNA in the murine 70Z/3 cell line after it is induced to kappa expression. These alterations occur at guanine residues which are part of the the 11 bp core sequence, and are identical to those observed in cells constitutively expressing kappa. This provides direct evidence for the induced binding of the tissue specific factor to intact chromatin. In intact chromatin we also observed significant alteration in the reactivity of a guanine, 3' of the core sequence, which is part of a potential secondary DNA structure, and protection of four residues that are part of a region homologous to the heavy chain enhancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.