In view of its potential for biological tissues analyses at a molecular level, Raman spectroscopy in optical range has been the object of biomedical research for the last years. The main aim of this work is the development of Raman spectroscopy for organic content identifying and determination of biomarkers of saliva at a molecular level for periodontitis diagnostics. Four spectral regions were determined: 1155 and 1525 cm −1 , 1033 and 1611 cm −1 , which can be used as biomarkers of this widespread disease.An informative volume deposition on the dried saliva drop (50× magnifications)
In view of its wealth of molecular information, Raman spectroscopy has been the subject of active biomedical research. The aim of this work is Raman spectroscopy (RS) application for the determination of molecular biomarkers in saliva with the objective of early periodontitis detection. As was shown in our previous study, carotenoids contained in saliva can be molecular fingerprint information for the periodontitis level. It is shown here that the carotenoid RS lines at wavenumbers of 1156 and 1524 cm −1 can be easily detected and serve as reliable biomarkers of periodontitis using resonance Raman spectroscopy of dry saliva.
The aim of the present study was to investigate the fluorescence properties of dental calculus in comparison with the properties of adjacent unaffected tooth structure using both lasers and LEDs in the UV-visible range for fluorescence excitation. The influence of calculus color on the informative signal is demonstrated. The optimal spectral bands of excitation and registration of the fluorescence are determined.Excitation wavelength λ, nm Fuorescence intensity, a.u. The fluorescence spectra of calculus and hard tissues of teeth excited with the help of LEDs at the wavelengths of 632 nm for dark (1) and light (2) calculus, dentin (3) and enamel (4)
This work is devoted to the optimization of fluorescence dental calculus diagnostics in optical spectrum. The optimal wavelengths for fluorescence excitation and registration are determined. Two spectral ranges 620 -645 nm and 340 -370 nm are the most convenient for supra-and subgingival calculus determination. The simple implementation of differential method free from the necessity of spectrometer using was investigated. Calculus detection reliability in the case of simple implementation is higher than in the case of spectra analysis at optimal wavelengths. The use of modulated excitation light and narrowband detection of informative signal allows us to decrease essentially its diagnostic intensity even in comparison with intensity of the low level laser dental therapy. The optimal wavelength of fluorescence registration (λreg) versus the excitation wavelength (λ exc)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.