Предложен численный подход исследования изменений во времени структур вихревых конфигураций идеальной жидкости. В основе численных алгоритмов лежит решение начально-краевой задачи для нестационарных уравнений Эйлера в терминах завихрённости и функции тока. Для этого используется спектрально-вихревой бессеточный метод, который базируется на аппроксимации функции тока рядом Фурье, приближении методом наименьших квадратов поля завихрённости по её значениям в маркерных частицах и расчёте динамики частиц путём решения задачи Коши. Схема спектрально-вихревого метода позволяет реализовать алгоритм анализа «моментальной структуры» поля скоростей методами теории динамических систем. При этом функция тока представляется в виде отрезка ряда Фурье в каждый момент времени. Алгоритм включает построение «моментального» векторного поля течения, а также его особых точек и сепаратрис седловых точек. Для изучения динамики изменений структур во времени применяется расчёт полей локальных показателей Ляпунова. Представлены результаты численного моделирования динамики структуры вихревых течений на основе предложенных подходов для двух видов граничных условий: периодических по пространственным координатам краевых условий и условия протекания жидкости через границу расчётной области. В случае периодических краевых условий выявлено, что вихревая конфигурация состоит из четырёх вихревых пятен, для которых построены поля локальных показателей Ляпунова. При наличии протекания жидкости рассмотрено течение в канале с заданной на границе скоростью, построено «моментальное» поле течения. Вычисления показали эффективность предложенных алгоритмов для углубленного анализа формирующейся картины поля скорости вихревой конфигурации.
In this article, a meshfree-spectral method for numerical investigation of dynamics of planar geophysical flows is proposed. We investigate inviscid incompressible fluid flows with the presence of planetary rotation. Mathematically this problem is described by the non-steady system of two partial differential equations in terms of stream and vorticity functions with different boundary conditions (closed flow region and periodic conditions). The proposed method is based on several assumptions. First of all, the vorticity field is given by its values on the set of particles. The function of vorticity distribution is approximated by piecewise cubic polynomials. Coefficients of polynomials are found by least squares method. The stream function is calculated by using the spectral global Bubnov-Galerkin method at each time step. The dynamics of fluid particles is calculated by pseudo-symplectic Runge-Kutta method. A detailed version of the method for periodic boundary conditions is described in this article for the first time. The adequacy of numerical scheme was examined on test examples. The dynamics of the configuration of four identical circular vortex patches with constant vorticity located at the vertices of a square with a center at the pole is investigated by numerical experiments. The effect of planetary rotation and the radius of patches on the dynamics and formation of vortex structures is studied. It is shown that, depending on the direction of rotation, the Coriolis force can enhance or slow down the processes of interaction and mixing of the distributed vortices. At large radii the vortex structure does not stabilize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.