Abstract:The groups of
R
R
-equivalent classes of the spinor groups of non-degenerate quadratic forms over arbitrary fields are computed in terms of certain
K
K
-cohomology groups of corresponding quadric hypersurfaces. As an application, examples of non-rational spinor groups of every dimension
≥
6
\geq 6
are given.
Any group of type F4 is obtained as the automorphism group of an Albert algebra. We prove that such a group is R-trivial whenever the Albert algebra is obtained from the first Tits construction. Our proof uses cohomological techniques and the corresponding result on the structure group of such Albert algebras.
Any group of type F4 is obtained as the automorphism group of an Albert algebra. We prove that such a group is R-trivial whenever the Albert algebra is obtained from the first Tits construction. Our proof uses cohomological techniques and the corresponding result on the structure group of such Albert algebras.
“…Démonstration: On applique la proposition précédenteà D 4 , au groupe Γ = Aut(D 4 ) et au corps de base k = C. Soit G/k(X) un groupe superversel dans ce contexte. On sait qu'il existe un corps E/k et un groupe E/F simplement connexe de type 2 D 4 qui n'est pas rétracte E-rationnel ( [8], exemple 6.10).…”
“…La question ouverte suivante est bien connue. -Si k est infini et parfait, la commutativité de G(k)/R pour G = Spin(q), où q est une forme quadratique non-dégénérée, a été démontrée par Chernousov et Merkurjev [CM01].…”
Soient k 0 un corps de caractéristique p > 0 et k = k 0 (t), où t est transcendant sur k 0 . On donne un exemple d'un k-groupe lisse connexe unipotent G tel qu'il existe une extension séparable finie F/k avec G(F )/R non-commutatif.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.