1915
DOI: 10.1007/bf01458222
|View full text |Cite
|
Sign up to set email alerts
|

Zur Theorie der konvexen Funktionen

Abstract: Under einer konvexen FunkCion vers~eh~ man eine in einem Intervall (a, b) Ftir jeden Weft definler~ eindeufige reelle Fnnl~ion f(x), die fftr je zwei Werte x tund x~ im ]n~rvall (a, b) der Bedingung gen~g~. J. L. W. V. Jensen*) hat gezeig~: Ist die kanvexe Funktion i~ dem Interva~l (a, b) nach oben beschr5nkt, so ist sie dort stetig. (Die S~etigkeit erstreckt sich iibrigens nut auf die inneren Punkte des In~ervalls, an den Enden brauch~ die Funktion nicht stetig zu sein, z. B. f(x) = x ~ fiir-l Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
98
0
3

Year Published

1948
1948
2014
2014

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 102 publications
(102 citation statements)
references
References 2 publications
1
98
0
3
Order By: Relevance
“…This result has been extended by Bernstein and Doetsch [9], Blumberg [ll], Sierpenski [67], and Ostrowski [49].…”
Section: A(s)s [Açs0 + Açs*)]/2mentioning
confidence: 59%
“…This result has been extended by Bernstein and Doetsch [9], Blumberg [ll], Sierpenski [67], and Ostrowski [49].…”
Section: A(s)s [Açs0 + Açs*)]/2mentioning
confidence: 59%
“…On the other hand, for q < 0, we have that f p,q ≤ 0 on I p . Therefore, by the Bernstein-Doetsch theorem [3], f p,q is convex. The interval I p is open, hence f p,q is locally Lipschitz on I p .…”
Section: Preliminary Observationsmentioning
confidence: 95%
“…Consequently, by Sierpiński's generalization [13] of the Bernstein-Doetsch Theorem [3], for every p ∈ P , f p,q(p) is continuous and hence it is also convex.…”
Section: Corollary 4 For Any Derivationmentioning
confidence: 99%
See 1 more Smart Citation
“…Furthermore he showed that f is continuous providing it has finite lim sup at each point, and especially if it is assumed to be upper semi-continuous or to be bounded from above. Many authors have been then interested in the problem of continuity of functions satisfying Jensen's functional inequality 2f (x) ≤ f (x + h) + f(x − h) (1) where f : Ω → R is a real function defined on a convex subset Ω of a real vector space X on which a suitable topology is given, and the variables x and h are restricted only to the conditions x, x + h, x − h ∈ Ω. These functions are also called convex in [11], convex, convex(J), J-convex or midconvex in the literature.…”
Section: Introductionmentioning
confidence: 99%