1984
DOI: 10.1002/actp.1984.010350513
|View full text |Cite
|
Sign up to set email alerts
|

Zur Lichtstreuung an Polymerdispersionen. Teil 5. Theoretische Untersuchungen zur Auswertung von Streulichtmessungen im Bereich der Mie‐Streuung

Abstract: Ein neues Verfahren zur Auswertung von experimentellen Streukurven im Bereich der Mie‐Streuung auf Basis der Mie‐Theorie unter Einbeziehung von Näherungsformeln der geometrischen Optik wird vorgestellt. Mit Hilfe dieser Methode ist es möglich, aus einem experimentell ermittelten Wertepaar von Streuintensität beim Streuwinkel 0° und Anfangsanstieg der Streukurve die dem gegebenen streuenden System entsprechenden Verteilungsparameter zu finden. Dies ist auch dann der Fall, wenn mehrere Zuordnungen (Mehrdeutigkei… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0

Year Published

2017
2017
2017
2017

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(2 citation statements)
references
References 5 publications
0
2
0
Order By: Relevance
“…For bidisperse suspensions, the choice of an appropriate fitting model was determined by the scattering properties of the particles. The large particles used in these experiments were Mie scatterers 37 : the Mie parameter x for a particle of radius a L = 1 µm interacting with light of wavelength λ = 632.8 nm in water (refractive index n = 1.33) was x = 2 πa L n / λ = 13.2, much larger than the Rayleigh threshold 38 x = 1. The Mie parameter for the small particles was x = 0.66, slightly below this threshold.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…For bidisperse suspensions, the choice of an appropriate fitting model was determined by the scattering properties of the particles. The large particles used in these experiments were Mie scatterers 37 : the Mie parameter x for a particle of radius a L = 1 µm interacting with light of wavelength λ = 632.8 nm in water (refractive index n = 1.33) was x = 2 πa L n / λ = 13.2, much larger than the Rayleigh threshold 38 x = 1. The Mie parameter for the small particles was x = 0.66, slightly below this threshold.…”
Section: Resultsmentioning
confidence: 99%
“… 12 By contrast, large objects with r / λ ≫ 1 act as phase objects, introducing oscillations to the optical transfer function and consequently to A ( q ). 12 , 37 To identify the positions of the non-monotonic oscillations in the large-particle signal, we examined the relative scattering intensity of the large particles f L ( q ) (Fig. 4 ).…”
Section: Resultsmentioning
confidence: 99%