Background: Altered levels of markers of oxidative stress, DNA repair, and telomere integrity have been detected in obese individuals and may underlie the pathogenesis of obesity-related diseases. However, whether or not such effects are reversed by intentional weight loss has not been systematically reviewed. Methods: A literature search in PubMed/Medline identified 2,388 articles of which 21 studies (randomized controlled trial (RCT) (n = 10) and non-randomized intervention studies (n = 11)) were classified as testing the effects of intentional weight loss on i) oxidative stress (n = 15), ii) DNA repair (n = 2), and iii) telomere length (n = 4). Results: Across a broad range of intervention designs, diet-, exercise-, surgery-, balloon-induced weight loss regimens decreased oxidative stress measures. Studies investigating DNA repair capacity or telomere length as endpoints after weight loss were less common in number and yielded null or inconsistent results, respectively. Conclusion: While this systematic review supports a role for intentional weight loss in reducing obesity-associated oxidative stress, it is not clear whether the effects are primary outcomes or secondary to improvement in obesity-associated insulin resistance and/or chronic inflammation. Although the lack of effect of intentional weight loss on DNA repair capacity might be anticipated given that oxidative stress is reduced, additional studies are needed. The inconsistent effects of weight loss on telomere length or DNA repair suggest the need for a re-assessment of intervention designs and assay methodology to definitively address this topic.