Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study investigates the potential impacts of climate change on future flows in the main stem of the Connecticut and Merrimack rivers within Massachusetts. The study applies two common climate projections based on (Representative Concentration Pathways), RCP 4.5 and RCP 8.5 and downscaled gridded climate projections from 14 global climate models (GCMs) to estimate the 100‐year, 24‐h extreme precipitation events for two future time‐periods: near‐term (2021–2060) and far‐term (2060–2099). 100‐year 24‐h precipitation events at near‐ and far‐term are compared to GCM‐driven historical extreme precipitation events during a base period (1960–1999) and results for RCP 8.5 scenario show average increases between 25%–50% during the near‐term compared to the base period and increases of over 50% during the far‐term. Streamflow conditions are generated with a distributed hydrological model where downscaled climate projections are used as inputs. For the near‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest 2.9%–8.1% increases in the 100‐year, 24‐h flow event in the Connecticut and an increase of 9.9%–13.7% in the Merrimack River. For the far‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest a 9.0%–14.1% increase in the Connecticut and 15.8%–20.6% for the Merrimack River. Ultimately, the results presented here can be used as a guidance for the long‐term management of infrastructures on the Connecticut and Merrimack River floodplains.
This study investigates the potential impacts of climate change on future flows in the main stem of the Connecticut and Merrimack rivers within Massachusetts. The study applies two common climate projections based on (Representative Concentration Pathways), RCP 4.5 and RCP 8.5 and downscaled gridded climate projections from 14 global climate models (GCMs) to estimate the 100‐year, 24‐h extreme precipitation events for two future time‐periods: near‐term (2021–2060) and far‐term (2060–2099). 100‐year 24‐h precipitation events at near‐ and far‐term are compared to GCM‐driven historical extreme precipitation events during a base period (1960–1999) and results for RCP 8.5 scenario show average increases between 25%–50% during the near‐term compared to the base period and increases of over 50% during the far‐term. Streamflow conditions are generated with a distributed hydrological model where downscaled climate projections are used as inputs. For the near‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest 2.9%–8.1% increases in the 100‐year, 24‐h flow event in the Connecticut and an increase of 9.9%–13.7% in the Merrimack River. For the far‐term, the medians of the GCMs using the RCP 4.5 and RCP 8.5 suggest a 9.0%–14.1% increase in the Connecticut and 15.8%–20.6% for the Merrimack River. Ultimately, the results presented here can be used as a guidance for the long‐term management of infrastructures on the Connecticut and Merrimack River floodplains.
The U.S. Geological Survey began systematic streamflow monitoring in Massachusetts nearly 100 years ago (1904) on the Connecticut River at Montague City. Since that time, hydrologic data collection has evolved into a monitoring network of 103 streamgage stations and 200 groundwater observation wells in Massachusetts and Rhode Island (2000 water year). Data from this network provide critical information for a variety of purposes to Federal, State, and local government agencies, engineering consultants, and the public. The uses of this information have been enhanced by the fact that about 70 percent of the streamgage stations and a small but increasing number of observation wells in Massachusetts and Rhode Island have been equipped with digital collection platforms that transmit data by satellite every 4 hours. Twenty-one of the telemetered streamgage stations are also equipped with precipitation recorders. The near real-time data provided by these stations, along with historical data collected at all stations, are available over the Internet at no charge. The monitoring network operated during the 2000 water year was summarized and evaluated with respect to spatial distribution, the current uses of the data, and the physical characteristics associated with the monitoring sites. This report provides maps that show locations and summary tables for active continuous record streamgage stations, discontinued Measuring discharge on the Saugus River at the Saugus River Ironworks, Saugus, Massachusetts (station number-01102345). Introduction 3 (RIDEM), and the Providence Water Supply Board (PWSB). The USGS also receives non-monetary services from the Cape Cod Commission, the Cooperative Extension of Martha's Vineyard, and the Nantucket Land Council to support the observation-well network in those areas. The authors are grateful to USGS employees Peter Steeves and Tomas Smieszek for compiling geographic information for the hydrologic monitoring network. Previous Studies Much of the information in this report was compiled from information provided in the USGS annual data reports (for example, Socolow and others, 2001). The annual data reports contain information on station descriptions; hydrologic conditions for the year; dailystreamflow values; daily, bimonthly, or monthly groundwater-level data; and statistical information about the current year's data relative to the historical data collected at a site. Annual data reports also provide information on discontinued stations, partial record sites, and miscellaneous measurements made during the current water year, water-quality data, and information about how the data were collected. Partial-record sites and miscellaneous measurements provide data to augment the continuous monitoring network; partial-record sites are typically operated for specific hydrologic investigations for relatively short periods and, therefore, are not described further in this report. The USGS does not operate a long-term water-quality monitoring network in Massachusetts or Rhode Island. Water-qualit...
Physical properties and concentrations of major inorganic constituents, nutrients, trace metals, suspended sediments, Escherichia coli bacteria, polyaromatic hydrocarbons, and polar pesticides and metabolites for base-flow and stormflow water samples collected in four subbasins and the Fresh Pond intake structure in the Cambridge, Massachusetts, drinking-water source area for water year 2005 ....99 16. Concentrations of Escherichia coli for water samples collected during base flow
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.