Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The present work was designed to study the impact of dielectric barrier discharge (DBD) plasma, ultrasound (US), and thermal treatment on the functional, rheological, and microbial analysis of sugarcane juice. The results showed that plasma and US treatment did not significantly affect the pH and color of the juice. Total soluble solids (°Brix) value increased from 16.30 ± 0.10 for untreated to 20.50 ± 0.15 during plasma treatment at 45 V for 2 min and 16.65 ± 0.27 during US treatment (40 kHz, power 240 W, and time 40 min). The maximum increase of 25% in total phenolic contents (TPC) and 21% in total flavonoid contents (TFC) was observed in a plasma‐treated sample at 40 and 45 V (for 2 min) respectively, whereas 18% in TPC and 16% TFC was observed in the US‐treated sample (40 kHz, power 240 W, and time 30 min) as compared to control sample. Plasma treatment increased the antioxidant activities (Ferric reducing antioxidant power (FRAP) assay and 2,2‐Diphenyl‐1‐picrylhydrazyl (DPPH) activity) toward maximum at 40 V and only 6% of vitamin C was degraded than others. Similarly, plasma treatment significantly reduced particle size, which further led to decreased significantly (P < 0.05) the apparent viscosity of sugarcane juice with a rise in shear rate and drove to a speedy breakdown on initial shearing. A significant reduction was observed in the microbial load among all treatments as compared to the control. Significant reductions of 3.6 and 0.50 log CFU/mL were observed in the total aerobic mesophilic and yeast and mold counts after DBD plasma treatment at 45 V for 2 min, respectively. Thus, we can conclude that novel technology like plasma treatment can be effectively used at an industrial scale for the preservation and processing of sugarcane juice. Practical Application Nowadays, novel processing techniques are employed to improve the nutritional quality and stability of juices. The consequences of the present research showed that DBD plasma treatment could improve the TPC, TFC, antioxidant activities, vitamin C, and rheological properties while reducing the activity of the microbial load better than the US and thermal treatment. The verdicts described that novel processing methods can enhance the quality of sugarcane juice at an industrial scale.
The present work was designed to study the impact of dielectric barrier discharge (DBD) plasma, ultrasound (US), and thermal treatment on the functional, rheological, and microbial analysis of sugarcane juice. The results showed that plasma and US treatment did not significantly affect the pH and color of the juice. Total soluble solids (°Brix) value increased from 16.30 ± 0.10 for untreated to 20.50 ± 0.15 during plasma treatment at 45 V for 2 min and 16.65 ± 0.27 during US treatment (40 kHz, power 240 W, and time 40 min). The maximum increase of 25% in total phenolic contents (TPC) and 21% in total flavonoid contents (TFC) was observed in a plasma‐treated sample at 40 and 45 V (for 2 min) respectively, whereas 18% in TPC and 16% TFC was observed in the US‐treated sample (40 kHz, power 240 W, and time 30 min) as compared to control sample. Plasma treatment increased the antioxidant activities (Ferric reducing antioxidant power (FRAP) assay and 2,2‐Diphenyl‐1‐picrylhydrazyl (DPPH) activity) toward maximum at 40 V and only 6% of vitamin C was degraded than others. Similarly, plasma treatment significantly reduced particle size, which further led to decreased significantly (P < 0.05) the apparent viscosity of sugarcane juice with a rise in shear rate and drove to a speedy breakdown on initial shearing. A significant reduction was observed in the microbial load among all treatments as compared to the control. Significant reductions of 3.6 and 0.50 log CFU/mL were observed in the total aerobic mesophilic and yeast and mold counts after DBD plasma treatment at 45 V for 2 min, respectively. Thus, we can conclude that novel technology like plasma treatment can be effectively used at an industrial scale for the preservation and processing of sugarcane juice. Practical Application Nowadays, novel processing techniques are employed to improve the nutritional quality and stability of juices. The consequences of the present research showed that DBD plasma treatment could improve the TPC, TFC, antioxidant activities, vitamin C, and rheological properties while reducing the activity of the microbial load better than the US and thermal treatment. The verdicts described that novel processing methods can enhance the quality of sugarcane juice at an industrial scale.
The effects of the pulsed electric field (PEF) on the rheological, structural, and physicochemical properties of almond milk were evaluated. Results indicated that there was a significant increase in electrical conductivity, cloud value, and cloud stability, while a significant decrease was observed in viscosity and nonenzymatic browning after PEF treatments. The particle size was significantly reduced and monodisperse distributions were observed, particle size reduction further confirmed by Scanning Electron Microscopy. Whiteness Index, clarity, and physical stability of samples were improved, without affecting either protein stability or viscosity. The rheological behavior of all samples was described using a Herschel–Bulky model. PEF treatments increased the apparent viscosity and changed the consistency index (K). The denaturation temperatures and apparent enthalpy of almond milk samples were modified by PEF treatments. This study indicated that dispersive and aggregative properties of PEF treated almond milk were different due to differences in particle coagulation, protein denaturation and morphological characteristic of aggregates.Practical applicationsNow a day, green processing techniques, such as PEF is used for processing the different types of beverages. The outcomes of the recent study described that PEF treatment could improve the physicochemical properties, reduce the particle, physical stability, and whiteness index of almond milk. The results of this research proposed that PEF has an ability to enhance the quality of almond beverage and may be employed for the processing at an industrial scale.
The effects of pulsed electric field (PEF) treatments on rheological and colour properties of soy milk were evaluated. Flow behaviour, viscosity and rheological parameters of PEF-treated soy milk were monitored using a controlled stress rheometer. For PEF treatments, electric field intensity of 18, 20 and 22 kV cm(-1) and number of pulses of 25, 50, 75 and 100 were used. For the measurements of rheological properties of soy milk shear rates between 0 and 200 s(-1) was used. The rheological behaviour of control and the PEF-treated soy milk were described using a power law model. The PEF treatments affected the rheological properties of soy milk. Apparent viscosity of soy milk increased from 6.62 to 7.46 (10(-3) Pa s) with increase in electric field intensity from 18 to 22 kV cm(-1) and increase in the number of pulses from 0 to 100. The consistency index (K) of soy milk also changed with PEF treatments. Lightness (L*), red/greenness (a*) and yellowness/blueness (b*) of soy milk were affected by PEF treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.