2019
DOI: 10.2478/sbe-2019-0016
|View full text |Cite
|
Sign up to set email alerts
|

Variants of the Traveling Salesman Problem

Abstract: This paper includes an introduction to the concept of spreadsheet optimization and modeling as it specifically applies to combinatorial problems. One of the best known of the classic combinatorial problems is the “Traveling Salesman Problem” (TSP). The classic Traveling Salesman Problem has the objective of minimizing some value, usually distance, while defining a sequence of locations where each is visited once. An additional requirement is that the tour ends in the same location where the tour started. Varia… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(1 citation statement)
references
References 0 publications
0
1
0
Order By: Relevance
“…Traveling Salesman [92] Traveling Salesman [93] Multiple Traveling Salesman [94] Bottleneck Traveling Salesman [95] Cutting Stock [96] Cutting Stock [97] 2D Cutting [98] Packing [99] Packing [100] 2D Packing [101] Bin Packing [102] Knapsack [103] Knapsack [104] Subset Sum [105] Unbounded Knapsack [105] Bounded Knapsack [106] Multiple Knapsack [107] Quadratic Knapsack [108] Scheduling [109] Scheduling [110] Production Scheduling [111] Workforce Scheduling [112] Job-Shop Scheduling [113] Precedence Constrained Scheduling [114] Educational Timetabling [115] Educational Timetabling [116] Facility Location [117] Assignment [118] Quadratic Assignment [119] Spanning Tree [120] Maximum Leaf Spanning Tree [121] Degree Constrained Spanning Tree [122] Minimum Spanning Tree [123] Boolean Satisfiability [124] Boolean Satisfiability [125] Covering [126] Minimum Vertex Cover [127] Set Cover [128] Exact Cover [129] Minimum Edge Cover [130] Vehicle Routing [131] Vehicle Routing…”
Section: Type Problemmentioning
confidence: 99%
“…Traveling Salesman [92] Traveling Salesman [93] Multiple Traveling Salesman [94] Bottleneck Traveling Salesman [95] Cutting Stock [96] Cutting Stock [97] 2D Cutting [98] Packing [99] Packing [100] 2D Packing [101] Bin Packing [102] Knapsack [103] Knapsack [104] Subset Sum [105] Unbounded Knapsack [105] Bounded Knapsack [106] Multiple Knapsack [107] Quadratic Knapsack [108] Scheduling [109] Scheduling [110] Production Scheduling [111] Workforce Scheduling [112] Job-Shop Scheduling [113] Precedence Constrained Scheduling [114] Educational Timetabling [115] Educational Timetabling [116] Facility Location [117] Assignment [118] Quadratic Assignment [119] Spanning Tree [120] Maximum Leaf Spanning Tree [121] Degree Constrained Spanning Tree [122] Minimum Spanning Tree [123] Boolean Satisfiability [124] Boolean Satisfiability [125] Covering [126] Minimum Vertex Cover [127] Set Cover [128] Exact Cover [129] Minimum Edge Cover [130] Vehicle Routing [131] Vehicle Routing…”
Section: Type Problemmentioning
confidence: 99%