2017
DOI: 10.1016/j.enconman.2017.04.058
|View full text |Cite
|
Sign up to set email alerts
|

Using electrochemical cycles to efficiently exploit the waste heat from a proton exchange membrane fuel cell

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 47 publications
(4 citation statements)
references
References 33 publications
0
3
0
1
Order By: Relevance
“…Liu 等人 [62,63] 基于有限时间分析方法,研究了不同准则下 TREC 回收余热的性能,分析了电池材料和热交换 器对系统最大功率及效率的影响。结果表明,等温系数、比充放电容量越大、内阻越小的材料,最大生态目标函 数越大,最大功率越大。由此,Liu 等人 [64] 进一步提出一种由质子交换膜燃料电池子系统和超级电容器子系统组 成的新型混合系统(图 S3(a)), 该混合系统存在最优电流密度,从而使混合系统的输出功率达到最大,比子系统 的输出功率大 6.85%-20.59%,总电效率得到提高,有助于更有效、充分地利用燃料能量。Long 等人 [65] 进一步提 出了一种双回路热再生电化学循环系统,采用遗传算法对系统进行了优化分析。结果表明,系统的最大输出功率 可达 50.11%,电效率提高了 13.31%,大大高于传统的热再生电化学循环装置。Zhang 等人 [66,67] 则建立了两种混合…”
Section: 本,更是提供了一种利用额外的、丰富的能源的方法,以减少化石能源的消耗。unclassified
“…Liu 等人 [62,63] 基于有限时间分析方法,研究了不同准则下 TREC 回收余热的性能,分析了电池材料和热交换 器对系统最大功率及效率的影响。结果表明,等温系数、比充放电容量越大、内阻越小的材料,最大生态目标函 数越大,最大功率越大。由此,Liu 等人 [64] 进一步提出一种由质子交换膜燃料电池子系统和超级电容器子系统组 成的新型混合系统(图 S3(a)), 该混合系统存在最优电流密度,从而使混合系统的输出功率达到最大,比子系统 的输出功率大 6.85%-20.59%,总电效率得到提高,有助于更有效、充分地利用燃料能量。Long 等人 [65] 进一步提 出了一种双回路热再生电化学循环系统,采用遗传算法对系统进行了优化分析。结果表明,系统的最大输出功率 可达 50.11%,电效率提高了 13.31%,大大高于传统的热再生电化学循环装置。Zhang 等人 [66,67] 则建立了两种混合…”
Section: 本,更是提供了一种利用额外的、丰富的能源的方法,以减少化石能源的消耗。unclassified
“…In the second heating (charging) process, the total input energy at high temperature is Q H ( Q H = T H Δ S ). So the efficiency of converting heat to electricity is given below: , while where Q c is the charge capacity of the cell, C p is the total heat capacity of the cell, α cell is the thermopower of the whole cell, R H and R L are internal resistance at high and low temperatures, respectively, and I is the current used in the charging and discharging processes. The efficiency related to Carnot efficiency is shown below: …”
Section: Liquid-based Systemsmentioning
confidence: 99%
“…In the second heating (charging) process, the total input energy at high temperature is Q H (Q H = T H ΔS). So the efficiency of converting heat to electricity is given below: 44,45…”
Section: Liquid-based Systemsmentioning
confidence: 99%
“…The hybrid system exhibited an MEE and MPD 32.04% and 32.18% higher than those of the single dye-sensitized solar cell, respectively. Zhang et al [11] employed TREC to harvest the waste heat from a proton-exchange membrane fuel cell, through which the MPD was enhanced by about 1.11-1.20 times. Guo et al [12] utilized TREC to harness the waste heat from high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC), and the MPD was increased by 15.6% compared to an HT-PEMFC operating alone.…”
Section: Introductionmentioning
confidence: 99%