2004
DOI: 10.1002/maco.200303790
|View full text |Cite
|
Sign up to set email alerts
|

Untersuchungen zum Einfluss des Stickstoffs auf das Lochkorrosionsverhalten hochlegierter austenitischer Cr‐Ni‐Mo‐Stähle (Teil II)

Abstract: Die Ermittlung des statischen Lochkorrosionspotentials an Chrom-Nickelstählen des Typs 18/12 ohne und mit steigenden Molybdängehalten sowie abgestuften Stickstoffgehalten erlaubte eine quantitative Bewertung des Einflusses von Stickstoff auf die Lochkorrosionsbeständigkeit. Es zeigte sich, dass die spezifische Wirkung des Stickstoffs zwischen 0,04 und 0,42 Masse% bei sonst völ-lig gleicher Zusammensetzung im Bereich von 0,06 bis 3,6 Masse% Mo nicht vom Molybdängehalt abhängt und in allen Legierungsgruppen nahe… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
2
0

Year Published

2006
2006
2017
2017

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(2 citation statements)
references
References 4 publications
0
2
0
Order By: Relevance
“…[5][6][7] Exposure to lower temperatures between 250 • C to 550 • C, often referred to "475 • C embrittlement", also results in variations of mechanical and electrochemical properties. [14][15][16][17][18][19][20][21][22][23][24][25][26][27][28] This has been attributed to phase separation mechanisms, primarily in the ferrite phase, due to the existing miscibility gap in the Fe-Cr equilibrium phase diagram. 7,29,30 Dependent on the chemical composition of the alloy, the ferrite either decomposes based on nucleation and growth or spinodal decomposition 5,22,23,[31][32][33][34] to Cr-enriched α and Fe-enriched α , or by nucleation of further precipitates such as G-phase, 5,[35][36][37][38][39][40] R-phase, 5,39,[41][42][43][44] secondary austenite (γ 2 ), 5,7 Laves phases, 41,44,45 chrom...…”
mentioning
confidence: 99%
“…[5][6][7] Exposure to lower temperatures between 250 • C to 550 • C, often referred to "475 • C embrittlement", also results in variations of mechanical and electrochemical properties. [14][15][16][17][18][19][20][21][22][23][24][25][26][27][28] This has been attributed to phase separation mechanisms, primarily in the ferrite phase, due to the existing miscibility gap in the Fe-Cr equilibrium phase diagram. 7,29,30 Dependent on the chemical composition of the alloy, the ferrite either decomposes based on nucleation and growth or spinodal decomposition 5,22,23,[31][32][33][34] to Cr-enriched α and Fe-enriched α , or by nucleation of further precipitates such as G-phase, 5,[35][36][37][38][39][40] R-phase, 5,39,[41][42][43][44] secondary austenite (γ 2 ), 5,7 Laves phases, 41,44,45 chrom...…”
mentioning
confidence: 99%
“…7). Because of forgeability the carbides are refined by PM manufacturing and even replaced by nitrides because of the pitting resistance in the matrix [41]. The opposite is achieved via MMCs, which contain a dispersion of coarse hard particles and are not meant to be hot worked (Fig.…”
Section: Discussionmentioning
confidence: 99%