BackgroundOveruse injury including stress fracture is a serious problem for athletes. Recently, the importance of bone metabolism and quality as factors preventing overuse injury has been increasingly recognized. Hence, we hypothesized that markers of bone metabolism and quality are related to overuse injuries.MethodsThe subjects, which were elite university lacrosse players (male, n = 35; age, 19.8 ± 1.1; female, n = 49; age, 20.0 ± 1.0), were divided into a stress fracture group and a control group. We measured the subjects’ physical characteristics (height, weight, body mass index, and body fat) and bone architecture was evaluated using quantitative ultrasound. Bone alkaline phosphatase, N-telopeptide cross-link of type I collagen, tartrate-resistant acid phosphatase 5b (TRAP-5b), homocysteine, and pentosidine were measured from blood samples obtained from all subjects.ResultsNo significant difference was observed between groups with respect to height, weight, body mass index, and body fat, as well as quantitative ultrasound. Further, there were no significant differences in the levels of bone alkaline phosphatase, N-telopeptide cross-link of type I collagen, or TRAP-5b between stress fracture and control groups in all subjects and in male subjects. However, a significant increase in TRAP-5b level was observed in the stress fracture group compared with the control in the female subjects (409.9 ± 209.3 and 318.6 ± 81.6 mU/dL, respectively; P < 0.05). Homocysteine and pentosidine did not differ between groups.ConclusionThese results suggest that osteoclast activity of female athletes with stress fractures may be enhanced by TRAP-5b.