Entamoeba histolytica, an early branching eukaryote, is the etiologic agent of amebiasis. Calcium plays a pivotal role in the pathogenesis of amebiasis by modulating the cytopathic properties of the parasite. However, the mechanistic role of Ca 2؉ and calcium-binding proteins in the pathogenesis of E. histolytica remains poorly understood. We had previously characterized a novel calcium-binding protein (EhCaBP1) from E. histolytica. Here, we report the identification and partial characterization of an isoform of this protein, EhCaBP2. Both EhCaBPs have four canonical EF-hand Ca 2؉ binding domains. The two isoforms are encoded by genes of the same size (402 bp). Comparison between the two genes showed an overall identity of 79% at the nucleotide sequence level. This identity dropped to 40% in the 75-nucleotide central linker region between the second and third Ca 2؉ binding domains. Both of these genes are single copy, as revealed by Southern hybridization. Analysis of the available E. histolytica genome sequence data suggested that the two genes are non-allelic. Homology-based structural modeling showed that the major differences between the two EhCaBPs lie in the central linker region, normally involved in binding target molecules. A number of studies indicated that EhCaBP1 and EhCaBP2 are functionally different. They bind different sets of E. histolytica proteins in a Ca 2؉ -dependent manner. Activation of endogenous kinase was also found to be unique for the two proteins and the Ca 2؉ concentration required for their optimal functionality was also different. In addition, a 12-mer peptide was identified from a random peptide library that could differentially bind the two proteins. Our data suggest that EhCaBP2 is a new member of a class of E. histolytica calcium-binding proteins involved in a novel calcium signal transduction pathway.