2018
DOI: 10.46298/epiga.2018.volume2.3302
|View full text |Cite
|
Sign up to set email alerts
|

Troisi\`eme groupe de cohomologie non ramifi\'ee des torseurs universels sur les surfaces rationnelles

Abstract: Let $k$ a field of characteristic zero. Let $X$ be a smooth, projective, geometrically rational $k$-surface. Let $\mathcal{T}$ be a universal torsor over $X$ with a $k$-point et $\mathcal{T}^c$ a smooth compactification of $\mathcal{T}$. There is an open question: is $\mathcal{T}^c$ $k$-birationally equivalent to a projective space? We know that the unramified cohomology groups of degree 1 and 2 of $\mathcal{T}$ and $\mathcal{T}^c$ are reduced to their constant part. For the analogue of the third cohomology gr… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
0
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(6 citation statements)
references
References 6 publications
0
0
0
1
Order By: Relevance
“…Let X 2 (T ′ ) be the group of everywhere locally trivial elements of H 2 (K , T ′ ). Restricting to the subgroup X 2 (T ′ ) of H 2 (K , T ′ ) yields a map (1) , Y (A K ) ̸ = ∅ implies that the class [Y ] ∈ H 1 (K , T ) actually lies in X 1 (T ). Now we arrive at:…”
Section: Theorem (Harari-szamuely [8 Theorem 51]) Let Y Be a K -Torso...mentioning
confidence: 99%
See 3 more Smart Citations
“…Let X 2 (T ′ ) be the group of everywhere locally trivial elements of H 2 (K , T ′ ). Restricting to the subgroup X 2 (T ′ ) of H 2 (K , T ′ ) yields a map (1) , Y (A K ) ̸ = ∅ implies that the class [Y ] ∈ H 1 (K , T ) actually lies in X 1 (T ). Now we arrive at:…”
Section: Theorem (Harari-szamuely [8 Theorem 51]) Let Y Be a K -Torso...mentioning
confidence: 99%
“…As for weak approximation, Harari, Scheiderer and Szamuely announced that the defect to weak approximation for tori can be described by X 2 ω (T ′ ), where X 2 ω (T ′ ) denotes the subgroup of H 2 (K , T ′ ) consisting of elements vanishing in H 2 (K v , T ′ ) for all but finitely many v ∈ X (1) . To this end, they constructed a pairing (see [7, §4, pp.…”
Section: Proposition (Harari-szamuely [8 Proposition 53]) Let Y Be a ...mentioning
confidence: 99%
See 2 more Smart Citations
“…-[6] Soit X une surface projective, lisse connexe, géométriquement rationnelle sur un corps k. Si X n'est pas k-birationnelle à une surface de del Pezzo k-minimale de degré 1, et si T est un torseur universel sur X avec un k-point, H3 nr (k(T )/k, Q/Z(2))/H 3 (k, Q/Z(2)) est un groupe de torsion 2-primaire. Soit k un corps de car.…”
unclassified