The observer variability and accuracy of linear and angular computed tomography (CT) software measurements in the transaxial plane were investigated for the temporomandibular joint with the General Electric 8800 CT/N Scanner. A dried and measured human mandible was embedded in plastic and scanned in vitro. Sixteen observers participated in the study. The following measurements were tested: inter- and extra-condylar distances, transverse condylar dimension, condylar angulation, and the plastic base of the specimen. Three frozen cadaveric heads were similarly scanned and measured in situ. Intra- and inter-observer variabilities were lowest for the specimen base and highest for condylar angulation. Neuroradiologists had the lowest variability as a group, and radiology residents and paramedical personnel had the highest, but the differences were small. No significant difference was found between CT and macroscopic measurement of the mandible. In situ measurement by CT of condyles with structural changes in the transaxial plane was, however, subject to substantial error. It was concluded that transaxial linear measurements of the condylar processes free of significant structural changes had an error and an accuracy well within acceptable limits. The error for angular measurements was significantly greater than the error for linear measurements.