2007
DOI: 10.1590/s0100-46702007000300006
|View full text |Cite
|
Sign up to set email alerts
|

Thermal behaviour of TEGMMA copolymers obtained by photopolymerization using iron complexes

Abstract: Copolymers of methyl methacrylate (MMA) and triethyleneglycol dimethacrylate (TEGDMA) obtained by photoinitiated polymerization using Fe(III) complexes were submitted to thermogravimetry (TGA) under dynamic air atmosphere and N2, and differential scanning calorimetric analysis (DSC). Thermal events were observed only between 90 - 110 ºC. Glass transitions were observed at ca. 100 ºC, followed by an exothermic peak at 170 ºC. The exothermic peak was assigned to a thermal curing process due to the presence of un… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 13 publications
(10 reference statements)
0
1
0
Order By: Relevance
“…Differential scanning calorimetry (DSC) curves were obtained in a differential scanning calorimetric module DSC 910 (TA Instruments, Waters, New Castle, DE, USA) (heat flow type) coupled to a TA2000 (TA Instruments, Waters) thermal analyzer, using aluminum sample support under air and nitrogen atmosphere. To demonstrate the influence of the parameters, 3 mg of heated sample were used under a dynamic atmosphere of synthetic air (100 mL/min) and increasing heating (2.5, 5, 10, 15, 20 and 40 °C/min) for each sample ( 19 ).…”
Section: Methodsmentioning
confidence: 99%
“…Differential scanning calorimetry (DSC) curves were obtained in a differential scanning calorimetric module DSC 910 (TA Instruments, Waters, New Castle, DE, USA) (heat flow type) coupled to a TA2000 (TA Instruments, Waters) thermal analyzer, using aluminum sample support under air and nitrogen atmosphere. To demonstrate the influence of the parameters, 3 mg of heated sample were used under a dynamic atmosphere of synthetic air (100 mL/min) and increasing heating (2.5, 5, 10, 15, 20 and 40 °C/min) for each sample ( 19 ).…”
Section: Methodsmentioning
confidence: 99%