2017
DOI: 10.1103/physrevb.96.205112
|View full text |Cite
|
Sign up to set email alerts
|

Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering

Abstract: We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semi-analytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single molecule enhancement factor (SMEF), whi… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
9
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
3

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(10 citation statements)
references
References 95 publications
0
9
0
1
Order By: Relevance
“…For Raman spectroscopy of a bulk-like sample (with an ensemble of molecules), an alternative spatially averaged Raman enhancement factor (AEF) is defined to also capture the effects of increased light-matter interaction volume using an ensemble of molecules, which allows us to compute the volume enhancement factor (VEF) for a specific device length, and compare it to a reference Gaussian beam. Below, we adapt a recently developed quantum optics approach to model the Raman spectrum of a molecule within a general medium, which was previously applied to describe SERS using plasmonic nanoresonators 27,28 . Here, we extend this approach to WGs, by utilizing the photon Green function, conveniently computed using a semi-analytical normal mode theory 25,26 .…”
Section: Raman Enhancement In Waveguides: Theoretical Formalismmentioning
confidence: 99%
See 3 more Smart Citations
“…For Raman spectroscopy of a bulk-like sample (with an ensemble of molecules), an alternative spatially averaged Raman enhancement factor (AEF) is defined to also capture the effects of increased light-matter interaction volume using an ensemble of molecules, which allows us to compute the volume enhancement factor (VEF) for a specific device length, and compare it to a reference Gaussian beam. Below, we adapt a recently developed quantum optics approach to model the Raman spectrum of a molecule within a general medium, which was previously applied to describe SERS using plasmonic nanoresonators 27,28 . Here, we extend this approach to WGs, by utilizing the photon Green function, conveniently computed using a semi-analytical normal mode theory 25,26 .…”
Section: Raman Enhancement In Waveguides: Theoretical Formalismmentioning
confidence: 99%
“…The detection area A D and the integration geometry for Eq. ( 2) are dependent on whether the Raman scattered power of a molecule in the vicinity of a WG (P SM ) or in free space (P SM 0 ) is being calculated; further details are given in Appendix D. Using a quantum optomechanical theory of SERS and its detection 27,28 , the Raman spectrum is expressed in terms of the E-field operator Ê by S(r D , r m , ω) = Ê † (r D , r m ; ω) • Ê(r D , r m ; ω) and can be calculated as…”
Section: A Raman Enhancement Of a Single Moleculementioning
confidence: 99%
See 2 more Smart Citations
“…В модели Герца нет реальных внутридипольных векторов E, H и S [1], что не позволяет рассмотреть физические механизмы формирования реактивных и активных потоков энергии, соответственно ближнего и дальнего полей. В последнее время все больше и больше исследований: как теоретических [5,6], так и экспериментальных [7,8], показывают принципиальное отличие физических процессов, происходящих в ближнем и дальнем полях. В диполе Герца нет понятия межзарядовой силы F, а следовательно и механизма установления равновесия амплитуды колебаний l 0 дипольных зарядов под действием внешнего индуцирующего поля Е 0 .…”
unclassified