Little is known about Zn homeostasis inZinc (Zn) is an essential trace metal required to preserve the biological function and/or structural integrity of numerous enzymes and proteins in all eukaryotic and prokaryotic cells (3,49,99). Procuring sufficient Zn to sustain growth during mammalian infection is a considerable challenge for bacterial pathogens (56). Serum levels of Zn are in the micromolar range, and the metal's bioavailability is restricted further because it is tightly bound to proteins and not freely exchangeable (35,85,88,103). In addition, as with iron (Fe), mammals sequester Zn systemically and locally in an attempt to deprive invading pathogens of this critical micronutrient (35,85,88,103). Bacteria, therefore, must depend upon the expression of high-affinity Zn uptake systems to compete successfully with the mammalian host for this metal. Although Zn is essential, high concentrations are toxic because of its proclivity to occupy ligand sites intended for other transition metals, such as Mn and Fe (39); consequently, bacteria must strictly control intracellular Zn levels to avoid disruption of physiological processes (49). Two major mechanisms by which Zn homeostasis is achieved are metal effluxers and regulation of Zn uptake systems.The discovery of the cluster 9 (C9) family of transition metal ATP-binding cassette (ABC) transporters significantly advanced our understanding of bacterial Zn metabolism (19). The function of the C9 family was revealed primarily through genetic studies in which the growth defects of mutants under metal-limiting conditions were reversed by supplementation with Zn (27,77) or Mn (8,27,59). Bioinformatic analyses of the C9 solute-binding protein (SBP) components, which capture metals within the periplasmic space and ferry them to the cytoplasmic membrane-bound permease complex, revealed a bimodal clustering pattern appearing to correlate with experimentally proven metal specificities (19). One subcluster con-* Corresponding author. Mailing address: