Cognitive neuroscience investigations of self-experience have mainly focused on the mental attribution of features to the self (self-related processing). In this paper, we highlight another fundamental, yet neglected, aspect of self-experience, that of being an agent. We propose that this aspect of self-experience depends on self-specifying processes, ones that implicitly specify the self by implementing a functional self/non-self distinction in perception, action, cognition and emotion. We describe two paradigmatic cases -sensorimotor integration and homeostatic regulation -and use the principles from these cases to show how cognitive control, including emotion regulation, is also self-specifying. We argue that externally directed, attention-demanding tasks, rather than suppressing self-experience, give rise to the selfexperience of being a cognitive-affective agent. We conclude with directions for experimental work based on our framework.Investigating self-experience in cognitive neuroscience How does the embodied brain give rise to self-experience? This question, long addressed by neurology [1] and neurophysiology [2], now attracts strong interest from cognitive neuroscience and the neuroimaging community [3][4][5][6].Recent neuroimaging studies have investigated selfexperience mainly by employing paradigms that contrast self-related with non-self-related stimuli and tasks. Such paradigms aim to reveal the cerebral correlates of 'selfrelated processing' (see Glossary). Recent reviews identify several brain regions that appear most consistently activated in self-related paradigms such as assessing one's personality, physical appearance or feelings; recognizing one's face; or detecting one's first name (see [4,6] for extensive reviews). The medial prefrontal cortex (mPFC) and the precuneus/posterior cingulate cortex (Precuneus/ PCC) are the most frequently discussed [4-10], but two additional regions, the temporoparietal junction (TPJ) and temporal pole, are also consistently activated [6].Although these studies have contributed valuable information about the neural correlates of self-related processing, two issues have recently arisen [3,6]. First, the identified regions, especially the midline regions (mPFC, Precuneus/PCC) often associated with self-related processing [4,[7][8][9][10], might not be self-specific, because they are also recruited for a wide range of other cognitive processes -recall of information from memory, inferential reasoning, and representing others' mental states [3,5,6]. In addition, the PCC appears to be engaged in attentional processes and might be a hub for attention and motivation [11,12], whereas the TPJ is important for attentional reorienting [13]. Hence, describing these regions (singly or collectively) as self-specific could be unwarranted [3,5,6]. Second, studies employing self-related processing approach self-experience through the self-attribution of mental and physical features, and thereby focus on the self as an object of attribution and not the self as the knowing subje...