Numerical diffraction coefficients are presented for vertex-diffracted edge waves induced on an infinitely-thin, perfectly conducting, semi-infinite plane angular sector. The current density on the surface of the plane angular sector is modeled using the physical theory of diffraction (PTD). The vertex-diffracted currents are defined as the difference between the exact and the PTD currents. The difference current is then modeled as a wave traveling away from the corner with unknown amplitude and phase factors. The unknown coefficients for the vertex-diffracted currents are calculated by using a least squares fit approximation. The vertex-diffracted currents are successfully modeled even for narrow angular sectors. The vertex-diffracted currents provide a substantial improvement to the accuracy of RCS patterns in off-specular directions.